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1 Notations

1.1 Sets

You can either express a set by characterizing it with a property or by simply listing all

elements of it.

A = {x : x satisfies property A}
A = {x1, x2, . . .}

Example 1.1 (Russell’s Paradox). Let A = {x : x /∈ x}. Then A ∈ A⇔ A /∈ A.

For solutions that fix this paradox, please refer to axiomatic set theory. Let X be a

restricted universe given which such paradoxes do not arise and consider only sets whose

elements are in X.

Example 1.2. Conventional notations:

N = {1, 2, 3, . . .}, the set of natural numbers.
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers.
Q = {m

n
: m,n ∈ Z, n 6= 0}, the set of rational numbers.

R, the set of real numbers.

Definition 1.1. A set A is a subset of X if x ∈ A⇒ x ∈ X, written as A ⊂ X.

Definition 1.2. For any subsets A and B of X, we define

1. A ∩B, the intersection of A and B, by A ∩B = {x ∈ X : x ∈ A and x ∈ B},

2. A ∪B, the union of A and B by A ∪B = {x ∈ X : x ∈ A or x ∈ B},

3. A ⊂ B, A is a subset of B, if x ∈ A⇒ x ∈ B,

4. A = B, A is equal to B, if A ⊂ B and B ⊂ A,

5. A\B, the difference between A and B, by A\B = {x ∈ A : x /∈ B},

6. A∆B, the symmetric difference between A and B, by A∆B = (A\B) ∪ (B\A),
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7. Ac, the complement of A, by Ac = {x ∈ X : x /∈ A},

8. ∅, the empty set, by ∅ = Xc,

9. A and B to be disjoint if A ∩B = ∅.

All these relationships between sets can be easily depicted in Venn Diagrams.

Theorem 1.1. For sets A,B,C,

1. A ∩B = B ∩ A,A ∪B = B ∪ A;

2. (A ∩B) ∩ C = A ∩ (B ∩ C), (A ∪B) ∪ C = A ∪ (B ∪ C); and

3. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Theorem 1.2 (DeMorgan’s Laws). If A,B are any sets, then (A ∩ B)c = Ac ∪ Bc and

(A ∪B)c = Ac ∩Bc.

Definition 1.3. For any subset A of X, the power set of A, denoted by P (A) or 2A, is the

set of all subsets of A.

1.2 Products and relations

Note that the set {a, b} = {b, a}. We say that {a, b} is an unordered pair. An ordered pair
is one that distinguishes the first and second elements in a pair. So if (a, b) and (c, d) are

ordered pairs, then (a, b) = (c, d) iff a = c and b = d. One way to define (a, b) is to let

(a, b) = {{a}, {a, b}}.

Definition 1.4. For any sets A and B, the Cartesian product of A and B, denoted by A×B,
is the set of all ordered pairs

{(a, b) : a ∈ A, b ∈ B}.

Example 1.3. R2 = R × R defines the 2-dimensional Euclidean space, i.e., the plane.

Similarly, Rn = R× · · · × R︸ ︷︷ ︸
n times

defines the n-dimensional Euclidean space.

A point x = (x1, x2, . . . , xn) ∈ Rn is called a vector, where xi is a real number for each
i = 1, . . . , n. And xi is called the i-th coordinate of the vector x.
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Definition 1.5. A binary relation R between A and B is a subset R ⊂ A × B, such that
aRb iff (a, b) ∈ R.

Example 1.4. Let A = {0, 1, 2}. The relation < between A and A can be defined by the

subset {(0, 1), (0, 2), (1, 2)} ⊂ A× A.

Example 1.5. The graph of any function (or mapping) f : A → B, denoted by {(a, f(a) :

a ∈ A)}, is a subset of A × B. Therefore, each function between A and B is a relation

between A and B. Also, for any subset R of A×B, if for each a ∈ A, there exists a unique
b ∈ B such that (a, b) ∈ R, then R is a function between A and B.

Definition 1.6. An equivalence relation on a set A (i.e., between A and A) is a relation ∼
that is

1. reflexive: ∀a ∈ A, a ∼ a,

2. symmetric: ∀a, b ∈ A, a ∼ b⇔ b ∼ a,

3. transitive: for all a, b, c ∈ A, if a ∼ b and b ∼ c, then a ∼ c.

Example 1.6. Equality is an equivalence relation on R.

If u : X → R is a utility function representing preferences on X, then defining x ∼ y

by u(x) = u(y) gives the indifference equivalence relation.

Definition 1.7. A relation R onX is complete if for all x, y ∈ X, xRy or yRx, it is transitive
if for all x, y, z ∈ X, xRy and yRz implies xRz, it is rational if it is both complete and

transitive.

Example 1.7. Let X = R. Then ≤ is complete and transitive on R, < and = are transitive

but not complete, and 6= is neither transitive nor complete.

Let X = R2 and define ≤ by (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. Then ≤ is not complete.
In this case, we call ≤ a partial order on R2.

Example 1.8. From consumption theory, suppose % is a rational preference on a finite set
X, then there exists a utility function u : X → R that represents %.
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2 Differentiation

2.1 Euclidean space

The k dimensional Euclidean space is a vector space over the real field.

Definition 2.1. For each positive integer k, let Rk be the set of all ordered k-tuples

x = (x1, x2, ..., xk),

where x1, ..., xk are real numbers, called the coordinates of x. Each x ∈ Rk is called a
vector. If y = (y1, .., yk) ∈ Rk and α ∈ R, let

x+ y = (x1 + y1, ..., xk + yk),

αx = (αx1, ..., αxk).

Recall that the definition of a vector space involves only the closedness of addition and

scalar (from the real field) multiplication.

The inner product of x and y on Rk is defined by

x · y =
k∑
i=1

xiyi,

and it induces the Euclidean norm

||x|| = (x · x)
1
2 =

√√√√ k∑
i=1

x2
i .

Note that || · || is the standard notation for norm.
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2.2 Derivatives

Definition 2.2. Let f be a real function on [a, b]. For any x ∈ [a, b] if the limit

lim
t→x

f(t)− f(x)

t− x

exists, define it to be f ′(x), and f ′(x) is called the derivative of f(x) at x.

Higher-order derivatives can be defined similarly. And intuitively, f ′(x) gives the rate

of change of f(x) per unit change in x, and it equals to the slope of the tangent line of f(x)

at x. The second derivative, f ′′(x) gives the rate at which the slope of f is changing, so it

describes the curvature of the function f . Denote the n-th order derivative of f as f (n).

Definition 2.3. If f (n) exists and is continuous on [a, b], we say that f is n-th order contin-

uously differentiable, and denote it as f ∈ Cn([a, b]).

Theorem 2.1. If f is differentiable at a point x ∈ [a, b], then f is continuous at x.

Proof. As t→ x, we have

f(t)− f(x) =
f(t)− f(x)

t− x (t− x)→ f ′(x) · 0 = 0.

Example 2.1. A function that is continuous at but not differentiable at some point. Con-
sider f(x) = |x|. It is not differentiable at 0.

Now we state some rules of differentiation without giving proofs. Please refer to Rudin

(1976, Chapter 5) for details.

Theorem 2.2. Suppose f and g are defined on [a, b] and are differentiable at x ∈ [a, b].

Then f + g, fg, and f/g are differentiable at x, and

(a) (f + g)′(x) = f ′(x) + g′(x);

(b) (fg)′(x) = f(x)g′(x) + f ′(x)g(x);

(c) (f/g)(x) = g(x)f ′(x)−g′(x)f(x)
g2(x)

.
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If f is differentiable on the range of g and is differentiable at g(x), then

(d) Chain rule d
dx

[f(g(x))] = f ′(g(x))g′(x).

2.3 Mean value theorems

Definition 2.4. Let f be a real function defined on a metric space X. We say that f is a
local maximum (minimum) at a point p ∈ X if there exists δ > 0 such that f(q) ≤ (≥)f(p)

for all q ∈ X with d(p, q) < δ.

The following theorem gives what is called the first-order condition in economics.

Theorem 2.3. Let f be defined on [a, b]; if f has a local maximum (minimum) at a point

x ∈ (a, b), and if f ′ exists, then f ′(x) = 0.

Proof. Choose δ such that

a < x− δ < x < x+ δ < b.

If x− δ < t < x, then
f(t)− f(x)

t− x ≥ 0.

Hence as the left-hand limit, f ′(x) ≥ 0. And similarly, as the right-hand limit f ′(x) ≤ 0.

Proved.

The mean value theorem:

Theorem 2.4. If f is a real continuous function on [a, b] which is differentiable in (a, b),

then there is a point x ∈ (a, b) at which

f(b)− f(a) = (b− a)f ′(x).

Proof. Consider the function

d(x) = f(x)− [(
f(b)− f(a)

b− a )(x− a) + f(a)],
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which measures the distance between f(x) and the line through (a, f(a)) and (b, f(b)).

Since d(a) = d(b) = 0, d(x) must have a local maximum or minimum in (a, b). Let it be x.

Then from the theorem above, d′(x) = 0. This completes the proof.

We know that if f is continuous on [a, b], and f(a) < c < f(b), then there exists a

point x ∈ (a, b) such that f(x) = c. Intuitively, this property comes from the continuity of

the function f . However, for derivatives on an interval, this property always holds.

Theorem 2.5. Suppose f is a real differentiable function on [a, b] and suppose f ′(a) < c <

f ′(b). Then there is a point x ∈ (a, b) such that f ′(x) = c.

Proof. Let g(t) = f(t) − ct. Then g′(a) < 0, so that g(t1) < g(a) for some t1 ∈ (a, b), and

g′(b) > 0, so that g(t2) < g(b) for some t2 ∈ (a, b). Hence g has a local minimum achieved

at some point x ∈ (a, b), and it must be that g′(x) = 0. Therefore, f ′(x) = c.

2.4 Functions with several variables

2.4.1 General differentiation

Let S be an open subset of Rn.

Definition 2.5. A function f : S → Rm is said to be differentiable at a point x ∈ S if there
exists a m× n matrix A such that

lim
h→0

|f(x+ h)− f(x)−Ah|
|h| = 0,

and we write

Df(x) = f ′(x) = A.

2.4.2 Partial derivatives and directional derivatives

Again let S be an open subset of Rn.

Definition 2.6. Let f : S → R. Then the partial derivative of f with respect to xi is defined
as

∂f(x)

∂xi
= lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . xi, . . . xn)

h
,
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given that the limit exists.

Sometimes the notation of ∂f(x)
∂xi

is shortened to be fi(x). Intuitively, ∂f(x)
∂xi

gives the

rate of change of f when x is changing one unit in the direction of the i-th coordinate.

If we would like to know how f would change if we move away from x by a little towards

the direction of some vector h, we need the concept of directional derivative.

Definition 2.7. Let f : S → R. Let x be any point in S, and h any point in Rn. Then the
directional derivative of f at x in the direction h is

Df(x;h) ≡ lim
t→0+

f(x+ th)− f(x)

t
.

given that the limit exists.

Theorem 2.6. Suppose f is differentiable at x, then Df(x;h) = Df(x) · h.

Note that Df(x;h) = df(x+th)
dt
|t=0. This theorem can be directly proved by applying

the chain-rule of multi-variable differentiation, a simple version of which states that

d

dt
f(x1(t), . . . , xn(t)) =

n∑
i=1

x′i(t)
∂

∂xi
f(x1(t), . . . , xn(t)).

For f : S → R, the vector Df(x) = (∂f/∂x1, . . . , ∂f/∂xn) is also called the gradient

of f at x, denoted as ∇f(x).

2.4.3 Higher-order derivatives

If f : S → R is differentiable on all of S, then Df = (∂f/∂x1, . . . , ∂f/∂xn) defines a function

from Rn to Rn. If the partial derivative of ∂f/∂xi with respect to xj exists at x, denote it as
∂2f/∂xi∂xj or fij. If fij exists for every pair of i, j, then we say that f is twice-differentiable

at x, and write

D2f(x) =


∂2f(x)

∂x21
· · · ∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2n

 .

If f is twice-continuously differentiable at x, then D2f(x) is also called the Hessian
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matrix, and denoted as H(x). The following theorem states that Hessian matrix is symmet-

ric.

Theorem 2.7. If f : S → R is a C2 function, then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x),

for all 1 ≤ i, j ≤ n, and x ∈ S.

2.5 Implicit function theorem

A function of the form y = y(x) is called an explicit function. In comparison, the equation

f(x, y) = c, where c is a constant, defines y as an implicit function of x. Suppose two

variables x and y satisfy the implicit relationship f(x, y) = c. The general question is under

which conditions can we express y as an explicit function of x (or vice versa).

For an important application, consider the indifference curve u(x, y) = c. If this relation

implies a function y = y(x), then we see straightforwardly how should y (the consumption

of the second commodity) change with x (the consumption of the first commodity) to main-

tain the same utility level c. Moreover, if we know that for some differentiable function

y(x), u(x, y(x)) = c, then by taking derivative w.r.t. x for both sides of this equation, we

have ux(x, y(x)) ·1+uy(x, y(x)) ·y′(x) = 0. (Note that we don’t need to solve for y(x) before

doing this.) That is, at any x0,

y′(x0) = −ux(x0, y0)

uy(x0, y0)
,

where ux(x0, y0) ≡ (∂u(x, y)/∂x)(x0, y0). The economic interpretation is that to main-

tain the same utility level, the marginal rate of substitution (MRS) is equal to the ratio

between the marginal utilities of the two commodities.

Example 2.2. Consider f(x, y) = x2 + y2 − 1. The equation f(x, y) = 0 specifies the unit

circle on the plane. At any point (x0, y0) other than (−1, 0) and (1, 0), there is an open

neighborhood of (x0, y0) on which the unit circle is part of a function y = y(x). Note that

at (−1, 0) and (1, 0), fy(x, y) = 0.
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Theorem 2.8 (Implicit function theorem, two-variable case). Let (x0, y0) be a point on the

locus of f(x, y) = c in the plane, where f is a C1 (continuously differentiable) function of

two variables. If fy(x0, y0) 6= 0, then f(x, y) = c defines a C1 function y = y(x) in some

neighborhood of (x0, y0).

To see the intuition, note that for y to be a function of x, whenever y changes, x must

also change (not the converse). Since f(x, y) = c, as long as the change in y adequately

changes f(x, y)—as ensured by fy(x, y) 6= 0—then x has to change accordingly to compensate

for the change of y so that the value of f remains c. For a simple counterexample, consider

the function f(x, y) = c for all y.

Proof. We provide only a sketch of the proof. Assume c = 0. We know that fy(x0, y0) 6= 0;

assume it is positive. Since fy(x, y) is continuous on R2, there is a small neighborhood

Nε((x0, y0)) of (x0, y0) such that for any (x, y) ∈ Nε((x0, y0)), fy(x, y) > 0. Now, first, since

f(x0, y0) = 0, and f is strictly increasing in y, there must be small number δ such that

f(x0, y0 + δ) > 0 and f(x0, y0 − δ) < 0. Second, since f is continuous around (x0, y0 + δ),

f(x, y0 +δ) is positive for x close enough to x0, and f(x, y0−δ) is negative for x close enough
to x0. Given each such x, there must be a unique y = y(x) between y0 − δ and y0 + δ such

that f(x, y) = 0. This is because f is continuous and strictly increasing on y. The rest of

the work is to show that y(x) is continuously differentiable.

Example 2.3 (Inverse function). Consider a C1 function y = g(x). Let f(x, y) = y − g(x).

Then f(x, y) = 0 iff y = g(x), and if f(x(y), y) = 0 for some function x(y), then x(y) must

be the inverse function of g, i.e., x(y) = g−1(y).

The implicit function theorem thus states that the inverse function of g exists around

(x0, y0) on the locus of g if fx(x0, y0) 6= 0, i.e., if g′(x0) 6= 0. And (g−1)′(y0) = 1/g′(x0).

To see the intuition, suppose g′(x0) > 0. Then since g is continuously differentiable,

there exists ε > 0 such that g′(x) > 0 for all x ∈ Nε(x0). This implies that g is strictly

increasing on Nε(x0) and therefore is invertible on it.

For multi-variable functions, consider f : Rm × Rn → Rn. Then f(x, y) = c describes
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the following equation system
f1(x1, . . . , xm, y1, . . . , yn) = c1

...

fn(x1, . . . xm, y1, . . . , yn) = cn.

Theorem 2.9 (Implicit function theorem). Let (x0, y0) be a point on the locus of f(x, y) = c,

where f : A×B ⊂ Rm×Rn → Rn is a C1 function. Let Dyf(x, y) be the n×n matrix whose
ij-th element is

∂fi(x, y)

∂yj
, i, j = 1, . . . , n.

Then if Dyf(x0, y0) is invertible, there exist open sets U and V with x0 ∈ U ⊂ A and

y0 ∈ V ⊂ B, and a C1 onto function y : U → V such that

f(x, y(x)) = c,∀x ∈ U.

Once we know that f(x, y) = c defines a C1 function y(x) around (x0, y0), we can

then derive y′(x0), which is a n ×m matrix, via the chain-rule: y′(x)|x0 = −[Dyf(x, y)]−1 ·
Dxf(x, y)|(x0,y0).

The intuition behind this theorem is similar to that of the two-variable case. For

y = (y1, . . . , yn) (or equivalently, each yj, j = 1, . . . n) to be a function of x, whenever yj
changes, x must also change. Note that for each j = 1, . . . , n, the marginal value of yj on f

is
∂f(x, y)

∂yj
= (

∂f1(x, y)

∂yj
, . . . ,

∂fn(x, y)

∂yj
),

which is the j-th column of the matrix Dyf(x, y). Since Dyf(x0, y0) is invertible,

the vector ∂f(x0, y0)/∂yj cannot be written as a linear combination of the other columns

∂f(x0, y0)/∂yk, k 6= j. That is, changes in yk’s, k 6= j, cannot compensate for the change of

yj to make the value vector of f remain c. Consequently, when yj changes, x has to change

accordingly.

Example 2.4. Suppose f(x, y) = x + Ay, where x, y ∈ R2 and A is a 2 × 2 matrix. Then
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f(x, y) = c defines a linear equation system

f1(x, y) = x1 + a11y1 + a12y2 = c1

f2(x, y) = x2 + a21y1 + a22y2 = c2.

We can express y as a function of x if A is invertible. (Due to linearity, fy(x, y) = A

for all y.) In fact, if so,

y = A−1(c− x).
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3 Basic convex analysis

3.1 Convex sets

Both convex sets and functions have general importance in economic theory, not only in

optimization.

Given two points x, y ∈ Rn and α ∈ [0, 1], the weighted average αx+ (1−α)y is called

the convex combination of x and y. (As a simplification, in this lecture we use normal fonts

instead of bold to denote vectors.)

Definition 3.1. A subset S ⊂ Rn is convex if for any 0 ≤ α ≤ 1 and x, x′ ∈ S, αx + (1 −
α)x′ ∈ S.

It’s straightforward to see that if S is convex, then any finite convex combination

α1x1 + · · ·+αkxk of points in S such that
∑k

l=1 αl = 1 also belongs to S, and the intersection

of any number of convex sets is convex.

Definition 3.2. The convex hull of a set S ⊂ Rn, denoted by Conv(S), is the smallest

convex set containing S.

Geometrically, Conv(S) consists of all points that can be written as finite convex

combinations of points in S. That is, it is the convex span of S.

Definition 3.3. For a set S, x ∈ S is an extreme point of S if x cannot be written as the
convex combination of other points in S.

Theorem 3.1 (Krein-Milman). A compact and convex set S is the convex hull of its extreme
points.

3.2 Hyperplane separation theorem

Definition 3.4. Let p ∈ Rn and p 6= 0, and let a ∈ R. The set

H(p, a) = {x ∈ Rn : p · x = a}

is called a hyperplane in Rn. The sets {x ∈ Rn : p · x ≥ a} and {x ∈ Rn : p · x ≤ a} are
called the half-space above and below the hyperplane H(p, a), respectively.
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Recall that p · x = ||p|| · ||x|| · cos θ, where θ is the angle between the vectors p and x.

The vector p is the normal of the hyperplane H(p, a) and is thus orthogonal (perpendicular)

to it, and a half-space is above H(p, a) if it is by the side of the hyperplane as the direction

of p points to. Each hyperplane in Rn is a subset of Rn with dimension n− 1. A hyperplane

in R2 is a straight line and a hyperplane in R3 is just a two-dimensional plane.

Example 3.1. If p = (p1, p2) ∈ R2 and I ∈ R, then the hyperplane H(p, I) = {(x1, x2) ∈
R2 : p1x1 +p2x2 = I} can be understood as the budget line, given income I and prices p1, p2.

Definition 3.5. Let X, Y be subsets of Rn. We say that the hyperplance H(p, a) separates

X from Y if

p · x < a,∀x ∈ X and p · y > a, ∀y ∈ Y.

Theorem 3.2 (Hyperplane separation). Let C be a closed and convex subset of Rn, and
x ∈ Rn\C. Then there exists p ∈ Rn, p 6= 0, and a ∈ R such that the hyperplance H(p, a)

separates C and x.

Proof. Let y be the point in C that the distance between x and y, ||x − y||, obtains its
minimum. (Such y exists due to the Weierstrass theorem). If we let

p = x− y and a′ = p · y,

then p · (x− y) > 0, and hence p · x > a′.

Next, we show that for all z ∈ C, p · z ≤ p · y. Suppose this is not true. Consider z ∈ C
such that p · z > p · y. For any α ∈ (0, 1), let

wα = αz + (1− α)y.

As C is convex, wα is always in C. When α is suffi ciently close to zero,

||x− wα||2 = ||x− y + α(y − z)||2

= ||p+ α(y − z)||
= ||p||2 + 2p · α(y − z) + α2||y − z||2

= ||p||2 + α[2p · (y − z) + α||y − z||2]

< ||p||2 = ||x− y||2.
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The last inequality is due to p · (y − z) < 0 and that it is independent of α.

Therefore,

||x− wα|| < ||x− y||,

which contradicts with y being an point in C that is the closest to x. Therefore,

p · z ≤ a′ for all z ∈ C.

Lastly, we can see that there must be ε > 0, ε small enough such that p·z < a′+ε,∀z ∈ C
and p · x > a′ + ε. Let a = a′ + ε, then H(p, a) strictly separates C and x.

There are many other versions of hyperplane separation theorems on how hyperplanes

separate points or (open or closed) convex subsets from (open or closed) convex subsets;

these theorems all share the same geometric intuition as that of the theorem above. When

one of the two sets is not closed, the separation theorem may ensure only weak separation.

Example 3.2. Let u1(x) and u2(x) be utility functions of two agents defined on a convex

set X. Suppose {v ∈ R2 : (v1, v2) ≤ (u1(x), u2(x)) for some x ∈ X} is convex (e.g., this
holds true when u1, u2 are concave functions, which we will formally define very soon).

The following result is on the Pareto frontier of allocations between two agents; it can be

generalized to more agents.

Claim 3.3. Every Pareto effi cient allocation x∗ ∈ X maximizes αu1(x) + (1 − α)u2(x) for

some α ∈ [0, 1].

We now sketch the proof of this claim using a version of the Hyperplane separation

theorem. Suppose x∗ is Pareto effi cient. Then the sets A = {v : v ≤ u(x) for some x ∈ X}
and B = {v : v > u(x∗)} are disjoint. Since A is convex by assumption and B is also convex,
there exist a vector p ∈ R2 and a scalar a such that H(p, a) separates the two sets: that is,

p · v ≤ a for all v ∈ A and p · v ≥ a for all v ∈ B (since B is not closed, we don’t get strict

separation).

Since the half-space above H(p, a) contains B, it must be that p ≥ 0. Geometrically,

since u(x∗) ∈ A and is on the boundary of B, we have u(x∗) ∈ H(p, a). That is, p · u(x∗) =

a ≥ p · v,∀v ∈ A. Hence p · u(x∗) ≥ p · u(x),∀x ∈ X. Let α = p1/(p1 + p2); then we have a

proof.

The hyperplane separation theorems are also applied in proving for example, the second

theorem of welfare economics, and in game theory, in showing that a mixed strategy is never
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a best-response if and only if it is strictly dominated. In general, the theorem is potentially

useful when we need to show the existence of a vector of weights.

Definition 3.6. The support function hX : Rn → R of a closed and convex subset X ⊂ Rn

is defined as

hX(p) = sup{p · x : x ∈ X},

where h∅(p) ≡ −∞ and hX(p) ≡ +∞ if the sup is infinite.

The support function hX(·) is uniquely determined by X, and by definition, X ⊂
{x ∈ Rn : p · x ≤ hX(p)}. That is, X is included in the half-space below the hyperplane

H(p, hX(p)). Furthermore, due to the notation sup in the definition, hX(p) is chosen to be

the smallest number a such that the half-space below H(p, a) includes X.

Geometrically, for any closed and convex set X and a vector p, hX(p) is chosen in a

way that the hyperplane H(p, hX(p)) is tangent to X and X is included in the half-space

below the hyperplane. That is, in direction p,H(p, hX(p)) supports X from the above.

Claim 3.4. hX(p) = inf{a ∈ R : p · x ≤ a,∀x ∈ X}.

Example 3.3. Consider X ⊂ R2. If X = {x}, then hX(p) = p · x, and if X = {(x1, x2) :

x2
1 + x2

2 = 1}, then hX(p) = ||p||.

Equivalently, we can define hX(p) = infx∈X p ·x. In this case, H(p, hX(p)) supports the

set X from the below.

Example 3.4. The expenditure function e(p, u) = infx∈Xu p · x is the support function of
the upper contour set Xu = {x : u(x) ≥ u} that corresponds to the utility level u.

Theorem 3.5 (Support-function theorem). For a closed and convex subset X ⊂ Rn,

X = ∩p∈Rn{x ∈ Rn : p · x ≤ hX(p)}.

Since this result is geometrically straightforward, we don’t give its proof. Intuitively,

it says that if we know that hX : Rn → R is the support function of some closed and convex
subset X of Rn, then we can uniquely recover X by taking intersection of the half-spaces

below the respective hyperplane H(p, hX(p)), p ∈ Rn. And in practice, we don’t need to
consider all p ∈ Rn when taking the intersection: it is suffi cient to consider all directions p
in the unit ball {x ∈ Rn : ||x|| = 1}.
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3.3 Concave functions

Definition 3.7. Let f : S → R, where S ⊂ Rn is convex. The function f is

(a) concave if f(αx + (1 − α)x′) ≥ αf(x) + (1 − α)f(x′), for any x, x′ ∈ S and α ∈ (0, 1),

and is

(b) convex if f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′), for any x, x′ ∈ S and α ∈ (0, 1)

That is, a function is concave if its value at the average of two points is always great

than or equal to the average of its values at the two points. When the inequality is strict

for all x, x′, α, then f is said to be strictly concave (or respectively, strictly convex). The

functions which are both concave and convex are of the form f(x) = a · x+ b and are called

affi ne functions.

Example 3.5. The function f : R+ → R defined as f(x) = xa is strictly concave if 0 < a < 1

and is strictly convex if a > 1. The function f : R2
+ → R defined as f(x1, x2) = xa1x

b
2 is called

the Cobb-Douglas function; it is concave if a + b ≤ 1 and is neither concave nor convex if

a+ b > 1.

Example 3.6. The expenditure function e(p, u) = infx∈Xu p · x is concave in p.

For any concave function f,−f is convex and vice versa. Hence it is without loss
of generality to concentrate on concave functions. The result below can be viewed as an

alternative way of defining concave functions.

Theorem 3.6. Let A ≡ {(x, y) : x ∈ S, f(x) ≥ y} be the set of points "on and below" the
graph of f . Then f is concave if and only if A is a convex set.

Proof. (⇒) Suppose f is concave. Let (x1, y1), (x2, y2) be two points inA. Then by definition,

f(x1) ≥ y1 and f(x2) ≥ y2. Since f is concave, for any α ∈ [0, 1],

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2)

≥ αy1 + (1− α)y2.

This means that (αx1 + (1−α)x2, αy1 + (1−α)y2), which is α(x1, y1) + (1−α)(x2, y2),

also belongs to A. Hence A is a convex set.
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(⇐) Suppose A is a convex set. Let x1, x2 be two points in S. Since f(x1) ≥ f(x1) and

f(x2) ≥ f(x2), we have

(x1, f(x1)), (x2, f(x2)) ∈ A.

As A is convex, for any α ∈ [0, 1],

α(x1, f(x1)) + (1− α)(x2, f(x2)) ∈ A.

That is, (αx1 + (1− α)x2, αf(x1) + (1− α)f(x2)) ∈ A. By the definition of A,

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2).

Hence f is concave.

Theorem 3.7. Let f : S → R be a concave function. Then, if S is open, f is continuous
on S.

Proof. Pick x ∈ S. Since S is open, there exists r > 0 such that Nr(x) ⊂ S and its boundary

A = {y : ||x − y|| = r} ⊂ S. Pick any {xn} ⊂ S such that xn → x. Then there exists N

such that for all n ≥ N, ||xn − x|| < r.

Then for all n ≥ N, there exist θn ∈ (0, 1) and zn ∈ A such that xn = θnx+ (1− θn)zn.

Since f is concave,

f(xn) ≥ θnf(x) + (1− θn)f(zn).

Taking limits on both sides,

lim inf
n
f(xn) ≥ f(x).

Similarly, for all n ≥ N, there exist λn ∈ (0, 1) and wn ∈ A such that x = λnxn + (1−
λn)wn. Since f is concave,

f(x) ≥ λnf(xn) + (1− λn)f(wn).
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Taking limits on both sides,

f(x) ≥ lim sup
n
f(xn).

That is, f(xn) converges and limn f(xn) = f(x). Since {xn} is picked arbitrarily, we
know that f(x) is continuous on S.

Nevertheless, a function f is concave does not imply that it is always differentiable on

the interior of its domain. The positive result on this is that if f : (a, b) → R is concave,
then it is differentiable at all but countably many points in (a, b). That is, it is differentiable

almost everywhere (cf. Rockafeller, Convex Analysis, 1970).

Theorem 3.8. Suppose f : S → R is continuously differentiable. Then f is concave if and
only if for all x, y ∈ S,

f(y) ≤ f(x) +Df(x) · (y − x).

Proof. We only prove the necessity. Since f is concave, for any α ∈ [0, 1], f(αy+(1−α)x) ≥
αf(y) + (1− α)f(x). That is,

f(y) ≤ f(αy + (1− α)x)− (1− α)f(x)

α

= f(x) +
f(x+ α(y − x))− f(x)

α
.

By taking limit w.r.t. α on the right-hand-side, we have

f(y) ≤ f(x) +Df(x) · (y − x).

The theorems below establishes the relationship between concavity and the second-

order derivative of the function.

Theorem 3.9. If f : (a, b)→ R is twice continuously differentiable, then f is concave if and
only if f ′′(x) ≤ 0 for all x ∈ (a, b).
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Proof. (⇐) Suppose f ′′(x) ≤ 0,∀x ∈ (a, b). Then f ′(x) is non-increasing. For x, y such that

a < x < y < b, pick α ∈ (0, 1) and let z = αx+ (1− α)y. Then

z − x = (1− α)(y − x),

y − z = α(y − x).

Note that since f ′(x) is non-increasing,

f(z)− f(x) =

∫ z

x

f ′(t)dt ≥
∫ z

x

f ′(z)dt = f ′(z)(z − x),

f(y)− f(z) =

∫ y

z

f ′(t)dt ≤
∫ y

z

f ′(z)dt = f ′(z)(y − z).

Hence

f(z) ≥ f(x) + f ′(z)(1− α)(y − x),

f(z) ≥ f(y)− f ′(z)α(y − x).

We have

f(z) = αf(z) + (1− α)f(z)

≥ α[f(x) + f ′(z)(1− α)(y − x)] + (1− α)[f(y)− f ′(z)α(y − x)]

= αf(x) + (1− α)f(y).

(⇒) Suppose f is concave and instead there exists x0 ∈ (a, b) such that f
′′
(x0) > 0.

Since f ′′(x) is continuous, there exists ε > 0 such that f ′′(x) > 0 for all x ∈ (x0−ε, x0 +ε) ⊂
(a, b). Reverse the proof in the (⇐) part, we can find x, y ∈ (x0 − ε, x0 + ε) and α ∈ (0, 1)

such that

f(ax+ (1− α)y) < αf(x) + (1− α)f(y),

which means f is strictly convex on (x0− ε, x0 + ε); this contradicts with the concavity

of f .

Definition 3.8. An n × n matrix A = (aij)i,j≤n is symmetric if aij = aji,∀i, j ≤ n. A

symmetric A is negative semi-definite if for all vectors z ∈ Rn, zTAz ≤ 0. It is negative
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definite if for all z 6= 0, zTAz < 0.

Theorem 3.10. If C is an open convex subset of Rn and f : C → R is twice continuously
differentiable, then f is concave if and only if D2f(x) is negative semi-definite for all x ∈ C.

Proof. Part I. Pick arbitrary y, z ∈ Rn such that {λ : y + λz ∈ C} is nonempty. Let
gy,z(λ) = f(λ(y+ z) + (1− λ)y) = f(y+ λz). We will show that f is concave iff each gy,z(λ)

is concave in λ.

First, Suppose f is concave. Pick λ, λ′ such that x := y + λz ∈ C, x′ := y + λ′z ∈ C.
Then f(x) = gy,z(λ) and f(x′) = gy,z(λ

′). Furthermore,

f(αx+ (1− α)x′) = f(y + (αλ+ (1− α)λ′)z)

= gy,z(αλ+ (1− α)λ′).

We see straightforwardly that the concavity of f implies that of each gy,z(λ).

Second, suppose gy,z(λ) is concave for each y, z. Pick x, y ∈ C and let z = x− y. Then

y + λz = y + λ(x− y)

= λx+ (1− λ)y.

Therefore, for each λ ∈ (0, 1),

f(λx+ (1− λ)y) = gy,x−y(λ)

= gy,x−y(λ · 1 + (1− λ) · 0)

≥ λgy,x−y(1) + (1− λ)gy,x−y(0)

= λf(y + (x− y)) + (1− λ)f(y + 0 · z)

= λf(x) + (1− λ)f(y).

Part II. Now we know that f is concave iffeach gy,z(λ) is concave, that is, iff [gy,z(λ)]′′ ≤
0 for each pair of y, z ∈ Rn. Let x0 = y + λz, then

g′′y,z(λ) =
∂2f(y + λz)

∂2λ
= zTD2f(x0)z.

24



Hence g′′y,z(λ) ≤ 0 for each pair y, z is equivalent toD2f(x0) being negative semi-definite

for all x0 ∈ C.

Example 3.7. The Hicksian demand function is defined by h((p, u) = arg minu(x)≥u p · x.
Due to the Envelope theorem (to be studied), h(p, u) = Dpe(p, u). Therefore, since e(p, u)

is concave in p, the Slutsky matrix Dph(p, u) = D2
pe(p, u) is negative semi-definite for all p,

implying that the Hicksian demand satisfies the law of demand.

3.4 Quasi-concave functions

Definition 3.9. Let f : S → R, where S ⊂ Rn is convex. The function f is

(a) quasiconcave if f(αx + (1− α)x′) ≥ min{f(x), f(x′)}, for any x, x′ ∈ S and α ∈ (0, 1),

and is

(b) quasiconvex if f(αx+ (1− α)x′) ≤ max{f(x), f(x′)}, for any x, x′ ∈ S and α ∈ (0, 1).

The function f is strictly quasiconcave, or quasiconvex, respectively, if the inequality

holds strict for all x, x′, α. If f is quasiconcave, then its value at the average of two points is

greater than or equal to the minimum of its values at the two points. Quasiconcave functions

are strictly more general than concave functions. If a function is monotonic, then it is both

quasiconcave and quasiconvex.

Example 3.8. f(x) = ex is quasiconcave, although it is strictly convex. The Cobb-Douglas

function f(x1, x2) = xa1x
b
2 is quasiconcave if a, b > 0.

The main reason that we care about quasiconcave functions in economics is because of

the following result, which intuitively states that a utility function is quasiconcave if and only

if its indifference curves are boundaries of some convex set, and this captures diminishing

marginal rate of substitution.

Theorem 3.11. Let U(c) = {x ∈ S : f(x) ≥ c} be the upper contour set of f for level c.
Then f is quasiconcave iff U(c) is a convex set for all c ∈ R.

Proof. (⇒) Suppose f is quasiconcave. If x, x′ ∈ U(c), then f(x) ≥ c and f(x′) ≥ c. Thus

for all α ∈ (0, 1),

f(ax+ (1− α)x′) ≥ min{f(x), f(x′)} ≥ c,
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which implies αx+ (1− α)x′ ∈ U(c).

(⇐) Suppose U(c) is a convex set for each c ∈ R. For any x, x′ ∈ S, obviously,

f(x), f(x′) ≥ min{f(x), f(x′)}. Therefore, x, x′ ∈ U(min{f(x), f(x′)}). Since U(min{f(x), f(x′)})
is a convex set, ∀α ∈ [0, 1], αx+(1−α)x′ ∈ U(min{f(x), f(x′)}). That is, ∀α ∈ [0, 1], f(αx+

(1− α)x′) ≥ min{f(x), f(x′)}.

Similarly, let L(c) = {x ∈ S : f(x) ≤ c} be the lower contour set of f for level c. Then
f is quasiconvex iff L(c) is a convex set for all c ∈ R.

Theorem 3.12. Suppose f : S → R is continuously differentiable. Then f is quasiconcave
if and only if for all x, y ∈ S,

f(y) ≥ f(x)⇒ Df(x) · (y − x) ≥ 0.

Proof. Again, we only prove for necessity. Since f is quasiconcave and f(y) ≥ f(x), for any

α ∈ [0, 1], f(αy + (1− α)x) ≥ f(x). That is

f(x+ α(y − x))− f(x)

α
≥ 0.

By taking derivative w.r.t. α for the left-hand-side, we will have Df(x) · (y − x) ≥ 0.

Example 3.9. Let u : R2
+ → R denote a consumer’s utility function. Then the boundary of

the upper contour set, u(x, y) = c, is exactly the indifference curve of the consumer at utility

level c. Thus u(x, y) is quasiconcave guarantees that the indifference curve is of convex shape.

That is, the function y(x) that solves u(x, y) = c is convex in x. This implies diminishing

marginal rate of substitution, that is, it guarantees that

MRSxy = −dy
dx

=
ux(x, y)

uy(x, y)

is decreasing in x. That is, the more of good x that you are consuming right now, the

less of good y is needed to compensate you for your loss of 1 unit of good x.
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3.5 A digression on ordinal and cardinal utility

Definition 3.10. For any nondecreasing function g on R and u : Rn → R, the composition
g ◦ u that maps x ∈ Rn to g(u(x)) is called a monotonic (nondecreasing) transformation of

u.

Example 3.10. The utility functions 3x1x2 +2, (x1x2)2, (x1x2)3 +x1x2, e
x1x2 and lnx1x2 are

all monotonic transformations of u(x1, x1) = x1x2.

Intuitively, a preference relation is ordinal if it defines the relative order of the objects

(e.g., prefer bundle (x1, x2) over bundle (y1, y2)), and it is cardinal if it also defines the

intensity of comparison (e.g., bundle (x1, x2) generates 5 units more utility than bundle

(y1, y2)). Formally,

Definition 3.11. A property of functions is called ordinal if whenever a function u has this
property, for any monotonic transformation g, g ◦ u also has this property. Otherwise, it is
called cardinal.

Claim 3.13. Concavity is a cardinal property.

This can easily be seen from the following example.

Example 3.11. u(x) =
√
x is concave on [0,∞), but the monotonic transformation of it,

g(u(x)) = (
√
x)4 = x2, is strictly convex.

Claim 3.14. Quasiconcavity is an ordinal property.

Proof. This is immediate. Since g is nondecreasing and f is quasiconcave, ∀α ∈ (0, 1) and

x, y ∈ S,

g(f(αx+ (1− α)y)) ≥ g(min{f(x, f(y))})
= min{g(f(x)), g(f(y)).
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4 Optimization I (Equality constraints)

4.1 Unconstrained optimization

For any set D ⊂ X, let intD = {x ∈ D : ∃r > 0, s.t., Nr(x) ⊂ D} be the set of interior
points of D. If Df(x∗) = 0 for some x∗ ∈ intD, then x∗ is said to be a critical point of f on

D.

Theorem 4.1. Suppose f : D ⊂ Rn → R and x ∈ intD. Then if f has a local maximum

(or minimum) at x and Df(x) exists, then Df(x) = 0.

It is easy to see that for a function to achieve local maximum at x, then the value of

f should not increase if we vary x a little in any direction h. That is, we need Df(x;h) =

Df(x) · h = 0 for any h, which happens only if Df(x) = 0. However, FOC is necessary but

not suffi cient for local optimality.

Example 4.1. Consider f(x) = x3. Although f ′(0) = 0, f does not have local max or min

at 0.

Example 4.2 (Saddle point). Consider f(x, y) = x2 − y2. Then Df(0, 0) = 0, but f does

not have local max or min at (0, 0).

We need concavity or local concavity to ensure that FOC is also suffi cient for global or

local maximum. For a concave function, local maximum and global maximum coincide, and

if a function is strictly concave, the maximizer is unique.

Theorem 4.2. Let D ⊂ Rn be convex, and f : D → R be a concave and differentiable

function on D. Then, x is an unconstrained maximum of f on D if and only if Df(x) = 0.

If we replace the concavity condition in the theorem with strict quasi-concavity, the

theorem still holds.

Proof. Only need to prove (⇐). Since f is concave, for any x, y ∈ D and α ∈ (0, 1]

αf(y) + (1− α)f(x) ≤ f(αy + (1− α)x)

f(y)− f(x) ≤ f(x+ α(y − x))− f(x)

α
.
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Take the limit of the right hand side as α→ 0, the inequality transforms to

f(y)− f(x) ≤ Df(x) · (y − x).

If Df(x) = 0, f(x) ≥ f(y),∀y ∈ D.

Example 4.3. Let f(x, y) = x4 + 2y2. There is a unique critical point (0, 0). Since f is

strictly convex, (0, 0) is the unique global minimizer of f .

Similarly, if f(x∗) = 0 and f is locally concave around x∗, then x is a local maximum

of f. As usual, to check f is locally concave around x∗, you need to check that D2f(x) is

negative semidefinite for all x in some neighborhood of x∗. Also, if f ∈ C2 and we already

know that f has a local maximum at x∗, then we know that D2f(x∗) is negative semidefinite.

This is because otherwise there must be z ∈ Rn such that z · D2f(x∗)z > 0, and f ∈ C2

implies that f is strictly convex around x∗ in some direction, so moving away from x∗ in

that direction or the reverse direction strictly increases f(x).

For completeness, in below we present methods used to identify the definiteness of a

symmetric matrix. Please refer to Sundaram, Section 1.5.2 for details. In practice, such work

and the second-order conditions are less important, because most often we will be dealing

with well-behaved (e.g., concave or convex) functions.

We already defined that a symmetric matrix A ∈ Rn×n is negative definite (semidefi-
nite) if z ·Az < (≤)0, ∀z ∈ Rn, and is positive definite (semidefinite) if z ·Az > (≥)0, ∀z ∈ Rn.
The easier way to check definiteness is to consider submatrices of A. Let Ak denote the k×k
submatrix of A that consists of only the first k rows and k columns of A, and let Bk denote

a k × k submatrix of A that consists of any k rows and the corresponding k columns (e.g.,
the second and fourth row and the second and fourth column form one B2) of A. Let |M |
denote the determinant of a matrix M .

Theorem 4.3. An n× n symmetric matrix A is

(a) negative definite iff (−1)k|Ak| > 0 for all 1 ≤ k ≤ n, and is negative semidefinite iff

(−1)k|Bk| ≥ 0 for all 1 ≤ k ≤ n and all Bk;

(b) positive definite iff |Ak| > 0 for all 1 ≤ k ≤ n, and is positive semidefinite iff |Bk| ≥ 0

for all 1 ≤ k ≤ n and all Bk.
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Example 4.4. Consider f(x, y) = x3 + y3 − 3xy. The first order conditions for optima are{
3x2 − 3y = 0

3y2 − 3x = 0
.

Solving them gives us two critical points, (0, 0) and (1, 1). The Hessian matrix of f is

H(x, y) =

(
6x −3

−3 6y

)
.

As |H(0, 0)| = −9 < 0, H(0, 0) is neither negative semidefinite nor positive semidefinite,

so (0, 0) is not a local optima. And as f11(1, 1) = 6 > 0 and |H(1, 1)| = 27 > 0, H(1, 1) is

positive definite. Hence (1, 1) is a strict local minimum.

4.2 Optimization with equality constraints

We first review the classical example of a utility maximization problem

max(x1,x2)∈R2 u(x1, x2)

s.t. g(x1, x2) = p1x1 + p2x2 − I = 0.

The arbitrage argument. Let dx = (dx1, dx2), u1 = ∂u
∂x1

and u2 = ∂u
∂x2
, then du =

u(x + dx) − u(x) = u1dx1 + u2dx2 is the change in utility from changing the consumption

of good 1 by dx1 and the consumption of good 2 by dx2. Now suppose the change of

consumption is due to the reallocation of an amount dI of money from buying good 2 to

buying good 1. Then dx1 = dI
p1
, dx2 = −dI

p2
, and du = (u1

p1
− u2

p2
)dI. Intuitively, u1

p1
is the

marginal utility from spending one more dollar on good 1. If u1
p1
− u2

p2
> 0, then du > 0. The

reallocation is benefitable for the consumer. Similarly, if u1
p1
− u2

p2
< 0, it would be benefitable

for the consumer to reallocate money from good 1 to good 2.

If x̄ is a local maximum, then both operations should not be benefitable at x̄, that is
u1
p1
− u2

p2
≤ 0 and u1

p1
− u1

p1
≥ 0. Hence at the optimal bundle x̄, u1(x̄)

p1
= u2(x̄)

p2
.

The tangency argument. Graphically, the consumer’s utility is maximized at x̄ if
the indifference curve is tangent to the budget line p1x1 + p2x2 = I at x̄. That is, at x̄,

the marginal rate of substitution (MRS) satisfies dx2
dx1

= −p1
p2
. Let c = u(x̄) and consider the
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indifference curve u(x1, x2) = c. From the implicit function theorem, u1dx1 + u2dx2 = 0.

Therefore, u1(x̄)
u2(x̄)

= −dx2
dx1

= p1
p2
. We obtain the same condition on optimality as the one

obtained from the arbitrage argument.

The multiplier. Since g(x1, x2) = p1x1 + p2x2− I, we have ∂g
∂x1

= p1,
∂g
∂x2

= p2. At the

local maximum x̄, let λ = u1
p1

= u2
p2
. Then u1 = λ ∂g

∂x1
, u2 = λ ∂g

∂x1
. That is, Ou = λ∇g.

4.2.1 The theorem of Lagrange

Consider the following optimization problem with equality constraints:

maxx∈Rn f(x)

s.t. g1(x) = b1

· · ·
gm(x) = bm.

where the objective function f and constraint functions g1, . . . , gm are real-valued con-

tinuously differentiable functions on Rn. The constraint set, denoted by C, consists of x ∈ Rn

that satisfies all constraints. We assume that n ≥ m; if m > n then in general C will be

empty. A point x̄ ∈ C is a local constrained maximizer of the above problem if x̄ is locally

optimal within some Nε(x̄) ∩ C.

The m× n matrix

Dg(x) =


∇g1(x)T

...

∇gm(x)T

 =


∂g1(x)
∂x1

· · · ∂g1(x)
∂xn

...
. . .

...
∂gm(x)
∂x1

· · · ∂gm(x)
∂xn


is called the Jacobian matrix. We say that the constraints g1, g2, . . . , gm satisfy non-

degenerate constraint qualification (NDCQ) at x̄ ∈ Rn if the matrix Dg(x̄) has full rank

m.

Theorem 4.4 (Lagrange). Suppose that the objective and constraint functions of the problem
above are differentiable, x̄ ∈ C is a local constrained maximizer and NDCQ is satisfied at x̄.

Then there are real numbers λ1, . . . λm, one for each constraint, such that

Df(x̄) = λ1Dg1(x̄) + · · ·+ λmDgm(x̄).
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The λ’s are referred to as the Lagrange multipliers. The Lagrangean of the problem is

defined as

L(x1, . . . , xn, λ1, . . . , λm) = f(x) + [λ1(b1 − g1(x)) + · · ·+ λm(bm − gm(x)].

The theorem above basically says that if x̄ is a local constrained maximizer of the

orginal problem that satisfies NDCQ, then there exist λ’s such that (x̄1 . . . , x̄n, λ1, . . . , λm)

is a critical point of the Lagrangean.

Proof. Since Dg(x̄) has full rank m, there are m columns out of the n columns that are

independent with each other. Without loss of generality, assume these columns correspond

to x1, . . . , xm. That is, at x̄, ∣∣∣∣∣∣∣∣
∂g1
∂x1

· · · ∂g1
∂xm

...
. . .

...
∂gm
∂x1

· · · ∂gm
∂xm

∣∣∣∣∣∣∣∣ 6= 0.

The implicit function theorem ensures that given the equality constraints, x1, . . . , xm

can be solved as functions of xm+1, . . . , xn around x̄ = (x̄1, . . . , x̄n). Therefore, if x̄ is a local

constrained maximizer of f(x), then (x̄m+1, . . . , x̄n) is a local maximizer of the unconstrained

problem

max f(x1(xm+1, . . . , xn), . . . , xm(xm+1 . . . , xn), xm+1, . . . , xn).

The FOCs of this problem are

(
∂f

∂x1

, . . . ,
∂f

∂xm
)


∂x1
∂xj
...

∂xm
∂xj

+
∂f

∂xj
= 0,∀j = m+ 1, . . . , n.

Due to the implicit function theorem,
∂x1
∂xj
...

∂xm
∂xj

 = −


∂g1
∂x1

· · · ∂g1
∂xm

...
. . .

...
∂gm
∂x1

· · · ∂gm
∂xm


−1

·


∂g1
∂xj
...

∂gm
∂xj

 ,∀j = m+ 1, . . . , n.
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Let

(λ1, . . . , λm) = (
∂f

∂x1

, . . . ,
∂f

∂xm
) ·


∂g1
∂x1

· · · ∂g1
∂xm

...
. . .

...
∂gm
∂x1

· · · ∂gm
∂xm


−1

Therefore, the FOCs can be rearranged to generate

∂f

∂xj
= (λ1, . . . , λm) ·


∂g1
∂xj
...

∂gm
∂xj

 ,∀j = m+ 1, . . . , n,

and simply by the definition of the λ’s, for i = 1, . . . ,m

∂f

∂xi
= (λ1, . . . , λm) ·


∂g1
∂xi
...

∂gm
∂xi

 .

The "cookbook" procedure for solving an optimization problem (Sundaram, Section

5.4) is to first set up the Lagrangean, derive all the first-order conditions with respect to all

x and λ’s, and then solve for critical points from the FOCs. After that, compare the critical

points and pick out the maximum.

Example 4.5. Consider the problem max(x,y) x
2 − y2, subject to x2 + y2 = 1.

Solution: The Lagrangean of this problem is

L(x, y, λ) = x2 − y2 + λ(1− x2 − y2).

The FOCs are

∂L(x, y, λ)

∂x
= 2x− 2λx = 0,

∂L(x, y, λ)

∂y
= −2y − 2λy = 0,

∂L(x, y, λ)

∂λ
= 1− x2 − y2 = 0.
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Solving them together, we obtain four critical points

(x, y, λ) = (1, 0, 1), (−1, 0, 1), (0, 1,−1), (0,−1,−1).

By comparing values of f at these critical points, we see that f obtains global maximum

at the first two points and obtains global minimum at the latter two points.

For most problems, the "cookbook" procedure of Lagrangean works well; in some rare

cases, it could be problematic. When the optimal solution does not satisfy NDCQ, the

critical points solved from the FOCs may not include the optimal solution. And in principle,

even if the optimal solution satisfies NDCQ, the FOCs are only necessary for optimization:

not all critical points that solve the FOCs are optimal; in fact, they may not even be

locally optimal. Furthermore, when a critical point is optimal, it could be either maximal

or minimal. Second-order conditions on the Lagrangean is useful in identifying whether

L(x, λ) is locally concave or convex around the critical points and within the constraint set,

and hence useful to check whether a critical point is a locally maximal or minimal. See

Sundaram (section 5) for examples and discussions on these issues.

4.2.2 Envelope theorem

Consider first the producer’s problem. Suppose that f is the production function, p is the

price of the output, x is input and w is its price. The profit function is then π(x, p, w) =

pf(x) − wx. Let v(p, w) denote the optimal profit given p, w. Suppose x̄(p, w) maximizes

π(x, p, w), then the optimal profit is π(x̄(p, w), p, w). From FOC of the profit maximization,

pf ′(x̄(p, w))− w = 0. What is marginal effect of p on the optimal profit?

∂π(x̄(p, w), p, w)

∂p
=

∂[pf(x̄(p, w))− wx̄(p, w)]

∂p

=
∂π

∂p
+
∂π

∂x

∂x̄

∂p

= f(x̄(p, w)) + (pf ′(x̄(p, w))− w)
dx̄(p, w)

dp

= f(x̄(p, w)).

There are two effects that a change in p could have on π(x̄(p, w), p, w). One is the
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direct effect ∂π/∂p, and the other is the indirect effect (∂π/∂x̄) · (∂x̄/∂p), which takes place
through x̄(p, w). The indirect effect is zero, because ∂π

∂x̄
= 0 : at the optimum x̄, small

changes in x won’t affect π.

We now consider the envelope theorem for optimization with equality constraints. Sup-

pose q = (q1, . . . , qK) is the vector of parameters of the optimization problem

v(q) = max
x∈Rn

f(x, q) such that g(x, q) = 0,

where the constraint can be viewed as a vector of constraints (in that case, λ will be a

vector of multipliers). The Lagrangean of this problem is

L(x, q;λ) = f(x, q) + λ · [0− g(x, q)].

Theorem 4.5 (Envelope theorem). Assume v(q) is differentiable in q and λ is the multiplier

associated with the maximizer x̄(q). Then

∂v(q)

∂qk
=
∂L(x̄, q;λ)

∂qk
,∀1 ≤ k ≤ K.

Proof. Since g(x̄(q), q) = 0,

∂g(x̄(q), q)

∂qk
=

n∑
i=1

∂g(x̄(q), q)

∂xi

∂x̄i(q)

∂qk
+
∂g(x̄(q), q)

∂qk
= 0.

Therefore,

∂v(q)

∂qk
=

∂f(x̄(q), q)

∂qk

=
n∑
i=1

∂f(x̄(q), q)

∂xi

∂x̄i(q)

∂qk
+
∂f(x̄(q), q)

∂qk

=
n∑
i=1

λ
∂g(x̄(q), q)

∂xi

∂x̄i(q)

∂qk
+
∂f(x̄(q), q)

∂qk

= λ · (−∂g(x̄(q), q)

∂qk
) +

∂f(x̄(q), q)

∂qk

=
∂L(x̄, q;λ)

∂qk
.

35



We used FOC to obtain the third equality and used the formula on ∂g(x̄(q), q)/∂qk to

obtain the fourth equality.

4.2.3 The Lagrangean multiplier

Consider maxx∈Rn f(x), subject to g1(x) = b1, . . . , gm(x) = bm, and focus on the parameter

vector b = (b1, . . . , bm). Suppose x̄(b) is a maximizer that corresponds to b, then v(b) =

f(x̄(b)). Due to the envelope theorem,

∂v(b)

∂bk
=

∂[f(x) +
m∑
i=1

λi(bi − gi(x))]

∂bk
= λk.

This result implies that λk is exactly the marginal effect of relaxing the constraint

gk(x) = bk on the value v(b) of the problem. In particular, recall the simple utility maxi-

mization problem where v(p, I) = maxu(x) subject to p · x = I. We have

∂v(p, I)

∂I
= λ =

u1(x̄)

p1

=
u2(x̄)

p2

.

So, λ describes the marginal utility of income—the increment of utility from spending

one more dollar. It is also called the “shadow price”from relaxing the (budget) constraint.
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5 Optimization II (Inequality constraints)

5.1 Utility maximization revisited

Let’s revisit the utility maximization problem.

max(x1,x2)∈R2 u(x1, x2)

s.t. g(x1, x2) = p1x1 + p2x2 − I ≤ 0.

x1 ≥ 0, x2 ≥ 0.

Note that we have rewritten the budget constraint as an inequality constraint and

have added the nonnegativity of quantities x1 and x2 into the constraints. Starting with any

consumption boundle x = (x1, x2), if we reallocate dI units of money from buying good 2

to good 1, then du = (u1(x)
p1
− u2(x)

p2
)dI. This operation is always benefitable at x as long as

u1(x)
p1
− u2(x)

p2
> 0.

What if this condition still holds at ( I
p1
, 0), that is, when you have already spent all

your money on good 1 (happen when the utility function takes specific forms)? Due to the

nonnegativity constraint on x2, you cannot decrease x2 any more. As a result, the optimal

bundle is x = ( I
p1
, 0); it is not in the interior of the constraint set and is hence called a corner

solution.

Example 5.1. Solvemax(x1,x2) x1(x2+3), s.t. x1+x2 ≤ 2. The optimal solution (the tangent

point) is (x∗1, x
∗
2) = (5/2,−1/2). With nonnegative constraints on x, (x∗1, x

∗
2) = (2, 0).

5.2 Kuhn-Tucker conditions

For simplicity, we focus on the case that there are only inequality constraints. Consider the

following optimization problem with m inequality constraints:

maxx∈Rn f(x)

s.t. g1(x) ≤ b1

· · ·
gm(x) ≤ bm

We assume that the functions f and the gi’s are continuously differentiable. Let C =

{x ∈ Rn : gi(x) ≤ bi, ∀1 ≤ i ≤ m} be the constraint set, which contains all points x that
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satisfy the inequality constraints. And local and global constrained optima are defined as

usual. We say that constraint i is binding at x if gi(x) = bi. Otherwise, we say that it is

slack at x.

The nondegenerate constraint qualification (NDCQ) is satisfied at x̄ ∈ C if the gradi-

ents of binding constraints at x̄ are independent, that is, if the set of vectors {∇gi(x̄)}i∈I(x̄)

are linearly independent, where I(x̄) = {i : gi(x̄) = bi}.

Theorem 5.1 (Kuhn-Tucker). Suppose that x̄ ∈ C is a local maximizer of the above prob-

lem. Assume also that NDCQ is satisfied at x̄. Then there are nonnegative real numbers
λ1, . . . , λm, one for each inequality constraint, such that

1. ∂f(x̄)
∂xj
−

m∑
i=1

λi
∂gi(x̄)
∂xj

= 0,∀1 ≤ j ≤ n;

2. gi(x̄) ≤ bi, λi ≥ 0, and λi(bi − gi(x̄)) = 0, for each 1 ≤ i ≤ m.

The Lagrangean of the problem is defined as

L(x, λ) = f(x) + λ1(b1 − g1(x)) + · · ·+ λm(bm − gm(x)).

Additional to the usual first-order conditions of the Lagrangean, the Kuhn-Tucker

conditions also require that for each constraint i, λi(bi − gi(x)) = 0. This condition is called

complementary slackness: if one of λi and constraint i is slack, then the other must be

binding.

When there are both equality and inequality constraints, we set up the Lagrangean for

all constraints, while require nonnegativity of the multiplier and complementary slackness

only for inequality constraints. In below, we still assume that there are only inequality

constraints.

By constructing the Lagrangean L(x, λ), again we are transforming the original con-

strained optimization problem to the unconstrained optimization of the Lagrangean, so that

we can look for solutions of the original problem among critical points of the Lagrangean.

With only equality constraints (i.e., gi(x) = bi,∀i), for each critical point (x̄, λ), the interpre-

tation of the associated λ’s is that they are penalty (punishment) weights on the constraints

around x̄: the penalty is λi per unit change of bi, which equals exactly the marginal value
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of bi to v(b). Moreoever, depending on whether we write the constraint as gi(x) = bi or

−gi(x) = −bi, the sign of λi can be positive or negative.

However, relaxing or violating any inequality constraint can only have nonnegative

effect on the optimal value of f(x), since doing so enlarges the constrained set. If at a con-

strained local maximizer x̄ constraint i is slack, then f(x) is locally maximized at the interior

of constraint i. As a result, any small deviation from x̄ that does not violate constraint i is

not benefitable and need not be associated with any penalty; that is, λi = 0. Conversely, if

at some constrained local maximizer x̄, relaxing or violating constraint i a little has strictly

positive effect on f(x), that is, if λi > 0, then it has to be the case that constraint i is binding

at x̄ (in this case, we say that x̄ is a corner solution, since it is maximized at the corner).

In order for λ to capture the nonnegative effect of enlarging the constraint set, we should

always be careful when formulating the Lagrangean with inequality constraints. When you

see any constraint gi(x) ≤ bi, you should add it to the Lagrangean as a term λi(bi − gi(x)),

instead of as λi(gi(x) − bi). And when you have a minimization problem, it is also helpful
to reformulate it as the problem of maximizing −f(x) before solving it.

Proof of Kuhn-Tucker’s theorem. Suppose x̄ is a local maximizer of f(x) and NDCQ is sat-

isfied at x̄. We first show that there exist {λi}i∈I(x̄) for constraints that bind at x̄ such

that

Df(x̄) =
∑

i∈I(x̄)

λiDgi(x̄),

and then show that these λ’s are nonnegative. Suppose instead such λ’s do not

exist. Then since the vectors {Dgi(x̄)}i∈I(x̄) are indepdent due to NDCQ, the vectors

{Dgi(x̄)}i∈I(x̄)∪{Df(x̄)} must also be independent. Therefore, we can find a vector z ∈ Rn,
s.t.

Df(x̄) · z = 1, and Dgi(x̄) · z = −1,∀i ∈ I(x̄).

For ε > 0 small enough, due to Taylor’s theorem and the continuity of Df(x) and

Dgi(x)’s, for each i ∈ I(x̄),

gi(x̄+ εz) = gi(x̄) +Dgi(x̄+ ξz) · εz < gi(x̄) = bi,

f(x̄+ εz) = f(x̄) +Df(x̄+ ξ′z) · εz > f(x̄),

where ξ and ξ′ are some numbers that satisfy 0 < ξ, ξ′ < ε. So by moving away from x̄ by εz,
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all slack constraints are still slack, and all binding constraints become slack. Nevertheless,

the value of f strictly increases. This contradicts with the local optimality of f(x) at x̄.

Now suppose for some i ∈ I(x̄), λi < 0. (Intuitively, this means that relaxing constraint

i has negative effect on f(x).) LetM < 0 be some number that satisfies λiM >
∑

i′∈I(x̄),i′ 6=i
λi′.

Since {Dgi′(x̄)}i′∈I(x̄) are independent, there exists z ∈ Rn such that Dgi(x̄) · z = M while

Dgi′(x̄) · z = −1,∀i′ 6= i, i′ ∈ I(x̄). Therefore,

f(x̄+ εz) = f(x̄) +Df(x̄) · εz + o(ε)

= f(x̄) + ε
∑

i∈I(x̄)

λiDgi(x̄) · z + o(ε)

= f(x̄) + ε[λiM −
∑

i′∈I(x̄),i 6=i′
λi′ ] + o(ε).

Since the second term is strictly positive and the third term is just the remainder of

the Taylor expansion, f(x̄+ εz) > f(x̄). Again this contradicts with the local optimality of

f(x) at x̄.

Lastly, for each constraint j that is slack at x̄, let λj = 0. The existence of λ1, . . . , λm

that satisfy the conditions is thus proved.

This proof is taken from Kreps’book, Microeconomic Foundations I. It can be further

shortened by using the Farkas’Lemma (as in Lin Zhou’s lecture notes) or an argument that

captures the idea of the lemma (as in MWG, Theorem M.K.2).

In below we solve the previous example as an illustration of the K-T method.

Example 5.2. Solve max(x1,x2) x1(x2 + 3), s.t. x1 + x2 ≤ 2, x1, x2 ≥ 0.

Solution: Let

L(x1, x2, λ, µ1, µ2) = x1(x2 + 3) + λ(2− x1 − x2) + µ1x1 + µ2x2.

The FOCs, complementary-slackness, and nonnegativity conditions are

(1) ∂L
∂x1

= x2 + 3− λ+ µ1 = 0;

(2) ∂L
∂x2

= x1 − λ+ µ2 = 0;
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(3) λ(2− x1 − x2) = 0, λ ≥ 0, 2− x1 − x2 ≥ 0;

(4) µ1x1 = 0, µ1 ≥ 0, x1 ≥ 0;

(5) µ2x2 = 0, µ2 ≥ 0, x2 ≥ 0.

We solve this inequality system by discussion:

Case 1 Suppose λ = 0. Then by (1), x2 + 3 + µ1 = 0. Since x2 ≥ 0 and µ1 ≥ 0, this is not

possible.

Therefore, λ > 0. By (3), x1 + x2 = 2.

Case 2 Given λ > 0, suppose µ1 = 0. Then by (1) and (2), λ = x2 + 3 = x1 + µ2. Together

with x1 + x2 = 2, we have µ2 = 2x2 + 1 > 0 and hence by (5), x2 = 0. Consequently,

µ2 = 1, x1 = 2, λ = 3, and µ1 = 0. We have a solution (x1, x2, λ, µ1, µ2) = (2, 0, 3, 0, 1).

Case 3 Given λ > 0, suppose µ1 > 0. Then x1 = 0. By (2), µ2 = λ > 0; hence x2 = 0. This

contradicts with x1 + x2 = 2.

We have exhausted all possibilities (double check for this). The only solution is

(x∗1, x
∗
2) = (2, 0), which is a corner solution.

For most of the time, the Kuhn-Tucker method works well, but as usual, in rare cases,

it may fail. It may fail if the global optimum does not exist, or if an optimum exists but the

constraint qualification is not satisfied at the optimum.

Example 5.3. Consider maxx,y−(x2 + y2), subject to (x− 1)3 − y2 ≥ 0. By observation, f

is maximized at (x̄, ȳ) = (1, 0). However, here g(x, y) = y2 − (x− 1)3 and Dg(x̄, ȳ) = (0, 0),

which is not of full rank. So NDCQ fails at (x̄, ȳ).

Furthermore, there exists no λ such that Df(x̄, ȳ)− λDg(x̄, ȳ) = (0, 0). So the Kuhn-

Tucker conditions fail to identify the maximizer of this problem.

Moreover, even when NDCQ is satisfied, the Kuhn-Tucker conditions are only necessary

for optimality: critical points that satisfy these conditions may not be local optimum. We

have the following theorem on the suffi ciency of the Kuhn-Tucker conditions.
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Theorem 5.2 (Suffi ciency). Suppose f(x) is concave, gi(x) is quasiconvex for each 1 ≤ i ≤
m, and x̄ satisfies all conditions in the Kuhn-Tucker theorem, then x̄ maximizes f(x) over

the constraint set C.

Proof. Consider any constraint i that is binding at x̄. For any x′ ∈ C, gi(x′) ≤ bi = gi(x̄).

Since gi(x̄) is quasiconvex, for any α ∈ [0, 1], gi(αx̄+ (1− α)x′) ≤ gi(x̄). We have

0 ≥ lim
α→0

gi(x̄+ α(x′ − x̄))− gi(x̄)

α
= Dgi(x̄) · (x′ − x̄).

Since f(x) is concave,

f(x′) ≤ f(x̄) +Df(x̄) · (x′ − x̄)

= f(x̄) + (
∑

i∈I(x̄)

λiDgi(x̄)) · (x′ − x̄)

≤ f(x̄),

where the last inequality is due to the nonnegativity of the λ’s. We can now conclude

that x̄ maximizes f(x).

We have the following remarks on this theorem:

1. We only need f(x) to be pseudo-concave. A function f(x) is pseudo-concave ifDf(x̄)(x′−
x̄) ≤ 0 implies f(x′) ≤ f(x̄); this definition directly implies its suffi ciency for local

maximum (check with the proof above). Moreover, f(x) is pseudo-concave iff it is qua-

siconcave and Df(x̄) = 0 implies f(x) attains global maximum at x̄ (counterexample,

f(x) = x3).

2. When f(x) is concave, NDCQ is not necessary anymore. Instead, it can be replaced

by the Slater’s condition, which requires that there exists x ∈ C such that gi(x) <

bi,∀1 ≤ i ≤ m. (See Sundaram, p188.)
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6 The real field and metric spaces

6.1 Irrationality of
√

2

Theorem 6.1. There is no rational number whose square is 2.

Proof. Suppose not, then there must be integers p and q without common factors such that

(
p

q
)2 = 2.

Therefore

p2 = 2q2.

Now note that p must be an even number, because the square of an odd number is

odd. Hence p = 2r for some integer r, and

q2 = 2r2.

Similarly, we can see that q must also be an even number, and p and q have a common

factor 2. Contradiction.

This result can be generalized to any prime number p.

6.2 Definition of R

First, R is a set containing Q. We also assume that R is an ordered field, which contains
Q as a subfield. The most distinctive assumption about the real number system is that it

permits no gaps. In other words, it is complete. This assumption is formulated by the Axiom

of Completeness.

Definition 6.1. A set A ⊂ R is bounded above if there exists a number b ∈ R such that
a ≤ b for all a ∈ A. The number b is called an upper bound for A.

A real number s is the least upper bound (supremum) of A, denoted as supA, if

(a) s is an upper bound for A;
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(b) if b is any upper bound for A, then s ≤ b.

Lower bounds and the greatest lower bound (infimum, inf A) for A can be defined

similarly.

Example 6.1. sup(0, 1) = sup[0, 1] = 1, inf(0, 1) = inf[0, 1] = 0. For A = { 1
n

: n ∈
N}, supA = 1, inf A = 0.

Axiom 6.2 (Axiom of Completeness). Every nonempty set of real numbers that is bounded
above has a least upper bound.

Claim 6.3. The set of rational numbers Q does not satisfy the Axiom of Completeness.

Proof. It is suffi cient to show that the least upper bound of S = {r ∈ Q : r2 < 2} does not
belong to Q. Let a = supS. Suppose instead a ∈ Q. We know immediately that a2 6= 2.

Define b ∈ Q as
b = a− a2 − 2

a+ 2
=

2a+ 2

a+ 2
.

Then

b2 − 2 =
2(a2 − 2)

(a+ 2)2
.

If a2 < 2, then b > a and b2 < 2. This contradicts with a = supS. Similarly, if a2 > 2,

then b < a and b2 > 2. This also contradicts with a = supS.

Definition 6.2. A real number a0 is a maximum (minimum) of the set A if a0 ∈ A and

a0 ≥ a (a0 ≤ a) for all a ∈ A.

The example below illustrates the difference between supremum (infimum) and maxi-

mum (minimum).

Example 6.2. While max[0, 1] = 1 and min[0, 1] = 0, max(0, 1) and min(0, 1) do not exist.

Theorem 6.4. Assume s ∈ R is an upper bound for a set A ⊂ R. Then, s = supA if and

only if, for every ε > 0, there exists and element a ∈ A such that s− ε < a.

Proof. (⇒) Suppose instead s = supA but there exists ε > 0 such that s − ε ≥ a,∀a ∈ A.
Then s − ε would be an upper bound of A that is smaller than s. This contradicts with

s = supA.

(⇐) By assumption, suppose s is not the supremum, then s > supA. Pick ε such that

0 < ε < s− supA, then s− ε > supA ≥ a, for all a ∈ A. Contradicts.
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6.3 Metric spaces

Definition 6.3. A set X, whose elements we shall call points, is said to be a metric space
if with any two points p and q of X there is associated a real number d(p, q), called the

distance from p to q, such that

(a) d(p, q) > 0 if p 6= q; d(p, p) = 0;

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.

Any function with these properties is called a distance function, or a metric.

The most familiar metric space is the Euclidean space Rk, where the distance between
two vectors x and y is defined as d(x, y) = ||x− y||.

Lemma 6.5. For x,y ∈ Rk, |x · y| ≤ ||x||||y||, or equivalently,

|
k∑
i=1

xiyi|2 ≤
k∑
i=1

|xi|2
k∑
i=1

|yi|2.

Proof. For any t ∈ R,x,y ∈ Rk, we have x− ty ∈ Rk. If there exists t ∈ R such that x = ty,

it is straightforward that |x · y| = ||x||||y||. If for all t, x 6= ty, then

(x− ty)2 > 0,∀t,

that is

x2 − 2tx · y + t2y2 > 0,∀t.

Note that the left hand side of the inequality is a quadratic function of t, so the

discriminant of the equation must satisfy

(−2x · y)2 − 4x2y2 < 0.

We have |x · y| < ||x||||y||.
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Recall that when k = 2, | cos θ| = |x·y|
||x|||y|| ≤ 1, where θ is the angle between the vectors

x and y.

Theorem 6.6. When the distance between x and y is induced by the norm, i.e., d(x,y) =

||x− y||, Rk is a metric space, .

Proof. Part (a) and (b) are trivial. To prove (c), it is suffi cient to show that

||x+ y|| ≤ ||x||+ ||y||, for any x,y, z ∈ Rk,

and then replace x by x− y and y by y − z.

We have

||x+ y||2 = (x+ y) · (x+ y)

= x2 + 2x · y + y2

≤ ||x||2 + 2||x||||y||+ ||y||2

= (||x||+ ||y||)2.

The induced metric

d(x,y) = ||x− y|| =
√

(x1 − y1)2 + · · ·+ (xk − yk)2

on Rk is called the Euclidean metric. Below are some other examples of metric spaces.

Example 6.3 (The taxicab distance). Let

d(x,y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xk − yk|.

Example 6.4 (Discrete metric). Let X be an arbitrary set, for any x, y ∈ X, let

d(x, y) =

{
0, if x = y;

1, if x 6= y.
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Example 6.5 (sup norm). Let X be the set of all real-valued continuous functions defined

on a fixed closed interval [a, b]. For any f, g ∈ X, let

d(f, g) = max
a≤s≤b

|f(s)− g(s)|.

Example 6.6. Suppose A and B are two convex and compact subsets of Rn. The Hausdorff
distance (metric) between two sets A and B is defined as dH(A,B) = max{d(A,B), d(B,A)},
where d(A,B) = sup{d(x,B), x ∈ A} and d(x,B) = inf{d(x, y), y ∈ B}.

6.4 Sequences and limits

6.4.1 Convergent sequences

Definition 6.4. Fix two sets A and B. If each x ∈ A is associated with an element in B,
denoted as f(x), we say that f is a function (mapping) from A to B.

Let (X, d) be a metric space. A sequence in X is a function from N = (1, 2, ...) to X,

denoted by x1, x2, ..., xn, . . ., or simply {xn}.

Definition 6.5. An ε-neighborhood of x ∈ X is a set Nε(x) = {y ∈ X : d(x, y) < ε}.

Definition 6.6. A sequence {xn} in X is said to converge if there is a point x ∈ X with the

property that for each ε > 0, there is an integer N ∈ N such that xn ∈ Nε(x) for all n ≥ N .

This is written as limn→∞ xn = x.

By definition, whether {xn} ⊂ X converges depends both on which elements are in

X and on the metric d. For example, { 1
n
} converges when X = [0, 1] and d is the usual

Euclidean distance, but does not converge when X = (0, 1] or d is the discrete metric. Also,

as X and d vary, so will the neighborhoods.

Theorem 6.7. Let {xn} be a sequence in X, then

(a) {xn} converges to x if and only if every neighborhood of x contains xn for all but finitely
many n.

(b) If {xn} converges, the limit is unique. That is if {xn} converges to both x and x′, then
x = x′.
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(c) If {xn} converges, {xn} is bounded.

Proof. (a) (⇒) By definition, for any ε > 0, there exists N such that for all n ≥ N, d(xn, x) <

ε. So finitely many xn are outside the neighborhood Nε(x), for each ε. (⇐) By definition.

(b) Fix an arbitrary ε > 0. As {xn} converges, there exist N and N ′ such that

n ≥ N ⇒ d(xn, x) <
ε

2
,

n ≥ N ′ ⇒ d(xn, x
′) <

ε

2
.

So when n ≥ max{N,N ′},

d(x, x′) ≤ d(x, xn) + d(xn, x
′) < ε.

Since ε is arbitrary, d(x, x′) = 0.

(c) Suppose xn → x. There exist N such that for each n ≥ N, d(xn, x) < 1. Let

r = max{1, d(x1, x), d(x2, x), ..., d(xN , x)},

then d(xn, x) ≤ r, for all n.

Theorem 6.8. Fix a sequence {xn} in Rk. Then limn xn = x if and only if limn x
i
n = xi,

for each i ∈ {1, ..., k}, where xn = (x1
n, ..., x

k
n), and x = (x1, ..., xk).

Proof. (⇒) Use bounded convergence. Simply note that for each i, |xin − xi| ≤ |xn − x|.

(⇐) Define η = ε√
k
. For each i, let Ni(η) be such that for each n ≥ Ni(η), |xin−xi| < η.

Let N(ε) = maxi{Ni(η)}. Then for any n ≥ N(ε),

d(xn, x) =

√√√√ k∑
i=1

|xin − xi|2 <

√√√√ k∑
i=1

(
ε√
k

)2 = ε.
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6.4.2 Cauchy sequences and completeness

Definition 6.7. A sequence {xn} in X is a Cauchy sequence if for every ε > 0 there is an

integer N such that d(xn, xm) < ε if m,n ≥ N .

Definition 6.8. A metric space in which every Cauchy sequence converges is said to be

complete.

The difference between convergent sequence and Cauchy sequence is that the limit is

explicitly involved in the former, but not in the latter. Every closed subset of any complete

metric space is itself a complete metric space. Also, all Euclidean spaces are complete.

Theorem 6.9. A sequence {xn} in Rk converges if and only if it is a Cauchy sequence.

Proof. (⇐) If {xn} is a sequence that converges to x, then there exist N and N ′ such that

for any m ≥ N, n ≥ N ′,

d(xm, x) <
ε

2
, d(xn, x) <

ε

2
.

So for any m,n ≥ max{N,N ′},

d(xm, xn) ≤ d(xm, x) + d(xn, x) < ε.

This proves that {xn} must be a Cauchy sequence.

(⇒) The proof is more involved and is skipped here.

6.4.3 Upper and lower limits

Definition 6.9. A sequence {xn} of real numbers is said to be monotonically increasing
(decreasing) if xn ≤ (≥)xn+1, for each n.

Theorem 6.10. Suppose {xn} is monotonic. Then {xn} converges if and only if it is
bounded.

Proof. (⇒) Has already been proved in last section.

(⇐) Without loss of generality (w.l.o.g.), suppose {xn} is monotonically increasing.
Since {xn} is bounded, it must have a least upper bound. Let it be x. Therefore for every
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ε > 0, there is an integer N such that x− ε < xN ≤ x. Since {xn} increases, for all n ≥ N ,

we have |xn − x| < ε. That is, {xn} converges to x.

Definition 6.10. Given a sequence {xn}, consider a increasing sequence {nk} of positive
integers. Then the sequence {xni} is called a subsequence of {xn}. If {xni} converges, its
limit is called a subsequential limit of {xn}.

Definition 6.11. Let {xn} be a sequence of real numbers. Let E be the set of x ∈ R ∪
{+∞,−∞} such that xni → x for some subsequence {xni}. The upper and lower limits of
{xn} are defined, respectively, as

lim sup
n→∞

xn = supE, lim inf
n→∞

xn = inf E.

For any sequence of real numbers {xn}, limn→∞ xn = x if and only if lim supn→∞ xn =

lim infn→∞ xn = x.

Example 6.7. Since the set of rational numbers are countable, we can view Q as a sequence
{xn}. Then every real number is a subsequential limit, and lim supn→∞ xn = +∞, lim infn→∞ xn =

−∞.

Example 6.8. Let {xn} = {1,−1, ..., 1,−1, ...}. Then lim supn→∞ xn = 1, lim infn→∞ xn =

−1.

Equivalently, we can define the upper and low limits as

lim sup
n→∞

xn = inf
n

sup
m≥n

xm,

lim inf
n→∞

xn = sup
n

inf
m≥n

xm.

For example, if we let yn = supm≥n xm, then yn is a monotonically decreasing sequence.

And we know from Theorem 6.10 that as long as yn is bounded, it will converge.

Theorem 6.11. If sn ≤ tn for n ≥ N, where N is fixed, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn,

lim sup
n→∞

sn ≤ lim sup
n→∞

tn.
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7 Cardinality and basic topology

This lecture follows mostly chapter 2 in Rudin (1976).

7.1 Finite, coutable and uncountable sets

Definition 7.1. A mapping (function) f from set A to set B is called a 1 − 1 mapping if

for any x1, x2 ∈ A such that x1 6= x2, we have f(x1) 6= f(x2).

Definition 7.2. If f(A) = B, we say that the mapping f between A and B is onto.

Definition 7.3. If there exists a 1− 1 onto mapping between A and B, we say that A and

B are equivalent (in cardinality), written as A ∼ B.

Definition 7.4. For any n, let Jn = {1, 2, ..., n}, and N = {1, 2, ..., n, ...}. Then for any set
A, we say

(a) A is finite if A ∼ Jn, for some n.

(b) A is inifinite if it is not finite.

(c) A is countable if A ∼ N.

(d) A is uncountable if it is neither finite nor countable.

(e) A is at most countable if it is finite or countable.

Example 7.1. Let E = (2, 4, 6, ...) be the set of even natural numbers. We can show that

E ∼ N. The 1− 1 onto mapping from N to E is given by f(n) = 2n.

Example 7.2. Z is countable, i.e., Z ∼ N. This can be proved by showing that the function
from N to Z :

f(n) =

{
n
2
if n is even,

−n−1
2

if n is odd,

is a 1− 1 onto mapping. Only infinite sets can be equivalent to one of its own proper

subsets.

Example 7.3. (−1, 1) ∼ R. The mapping between (−1, 1) to R is given by f(x) = x
x2−1

. In

fact, (a, b) ∼ R for any open interval (a, b).
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Theorem 7.1. The set Q is countable, and the set R is uncountable.

Proof. (i) For each n ∈ N, let

An = {±p
q

: p+ q = n, p, q ∈ N and have no common factor}.

Then Q = ∪n∈NAn. Since each An is finite, we can simply count them one by one and

form a sequence consists of all rational numbers. Therefore Q is countable.

(ii) It is suffi cient to show that (0, 1) is uncountable. Suppose it is not, then there is a

1− 1 onto mapping f between N and (0, 1), represented as

f(n) = 0.an1an2 · · · ank · · · .

We now construct a decimal number b = 0.b1b2 · · · , and let bn 6= ann for each n. For

example, let

bn =

{
2 if ann = 1,

1 if ann 6= 1.

Since b ∈ (0, 1), there must be some n, such that b = f(n), that is

0.b1b2 · · · = 0.an1an2 · · · ann · · · ,

which implies bn = ann,∀n. Contradiction.

Example 7.4. The union of countably many countable sets and the product of finite count-
able sets are both countable.

Definition 7.5. Given a set A, the power set of A is the set of all subsets of A, denoted as
P (A) or 2A.

The theorem below states that the power set of any set is always larger than itself. As

a result, there is no largest set.

Theorem 7.2 (Cantor’s theorem). Given any set A, there does not exists a function f :

A→ 2A that is onto.
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Proof. We need to show that any function f : A → 2A is not onto. For this purpose, it is

suffi cient to show that there exists B ∈ 2A (i.e., B ⊂ A) such that B 6= f(x) for all x ∈ A.

Let

B = {x ∈ A : x /∈ f(x)}.

If B = f(x0) for any x0 ∈ A, then

x0 ∈ f(x0)⇔ x0 /∈ f(x0).

We have a contradiction.

Example 7.5 (The Cantor set). Let C0 = [0, 1]. Blow we construct sets Ck inductively by

removing the open middle third of each component of Ck−1.

C1 = C0\(
1

3
,
2

3
) = [0,

1

3
] ∪ [

2

3
, 1],

C2 = C1\
(

(
1

9
,
2

9
) ∪ (

7

9
,
8

9
)

)
=

(
[0,

1

9
] ∪ [

2

9
,
1

3
]

)
∪
(

[
2

3
,
7

9
] ∪ [

8

9
, 1]

)
,

· · ·

The Cantor set is defined as

C = ∩∞k=0Ck.

This set is an uncountable set as each number in C is uniquely identified by an infinite

sequence of binary numbers. However, C has zero length (hence it does not contain any

open set). This is because the total length of the open middle intervals removed is

1

3
+ 2(

1

9
) + 4(

1

27
) + · · ·+ 2k−1(

1

3k
) + · · · = 1.

Lastly, we present an application of cardinality on the representation of rational pref-

erences.

Example 7.6 (Lexicographic preference). Suppose X = [0, 1]× [0, 1], and (x1, y1) � (x2, y2)

if and only if either x1 > x2 or x1 = x2 and y1 ≥ y2. The preference relation � is rational
(complete and transitive), but cannot be represented by any utility function u : X → R.
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Suppose instead some u : X → R represents �. For any x1, x2 ∈ [0, 1] such that

x1 > x2, since (x1, 1) � (x1, 0) � (x2, 1) � (x2, 0), u(x1, 1) > (x1, 0) > u(x2, 1) > u(x2, 0).

Therefore, the intervals {(u(x, 0), u(x, 1)) : x ∈ [0, 1]} must be disjoint subsets of R. Since
[0, 1] is uncountable, there are uncountably many such intervals. However, this is impossible,

as each interval contains at least one rational number and rational numbers are countably

many.

7.2 Basic topology

Let X be a metric space with a metric d(·, ·). All points and sets discussed in this section
are elements and subsets of X.

7.2.1 Open and closed sets

Definition 7.6. A point p is an interior point of E if there is a neighborhood N of p such

that N ⊂ E. E is open if every point of E is an interior point of E.

Theorem 7.3. Every neighborhood is an open set.

Proof. For any q ∈ Nr(p), let ε be some positive real number such that ε < r−d(p, q). Then

for any s ∈ Nε(q),

d(s, p) ≤ d(s, q) + d(q, p) < d(p, q) + ε < r.

That is, s ∈ Nr(p). Proved.

Definition 7.7. A point p is a limit point of the set E if every neighborhood of p contains

a point q 6= p such that q ∈ E. If a point p ∈ E is not a limit point of E, then p is called an
isolated point of E.

Theorem 7.4. If p is a limit point of E, then every neighborhood of p contains infinitely
many points of E.

Proof. Suppose not, then there is a neighborhood N of p such that N contains only finitely

many points, q1, .., qn, of E. Let

r = min
1≤m≤n

d(p, qm).
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Then the neighborhood Nr(p) contains no point in E. This is in contradiction with

the definition of a limit point.

Definition 7.8. E is closed if every limit point of E is a point of E.

That is, a set E is closed if the limit of any convergent sequence in E belongs to E. In

other words, E is closed under the operation of taking limit.

Theorem 7.5. A set E is open if and only if its complement Ec is closed.

Proof. First, suppose E is open, and x is a limit point of Ec. Since every neighborhood of x

intersects with Ec, x is not an interior point of E. So x /∈ E, that is x ∈ Ec. It follows that

Ec is closed.

Secondly, suppose Ec is closed. Pick any x ∈ E. Then x /∈ Ec and x is not a limit

point of Ec. If every neighborhood of x intersects with Ec, then x would be a limit point

of Ec. So there must be some neighborhood N of x, such that N ∩ Ec = ∅, i.e., N ⊂ E.

Therefore E is open.

Example 7.7. Consider the metric space R. Both ∅ and R are open and closed. Any interval
(a, b), (a,∞) is open, and any interval [c, d], [c,∞) is closed.

Example 7.8. { 1
n

: n ∈ N} ⊂ R is neither open nor closed. This set has a limit point which
does not belong to it. Similarly, Q ⊂ R is neither open nor closed.

Example 7.9. If X is endowed with the discrete metric, then every S ⊂ X is both open

and closed.

Definition 7.9. E is dense in X if every point of X is a limit point of E, or a point of E

(or both).

Example 7.10. Q is dense in R.

Definition 7.10. Let E ′ be the set of limit points in X, then the closure of E is the set

Ē = E ∪ E ′.

The closure of E is the smallest closed set containing E. Finally, we state the following

theorem without proof.

Theorem 7.6. The union of arbitrarily many open sets and the intersection of finitely many
open sets are open; the union of finitely many closed sets and the intersection of arbitarily

many closed sets are closed.
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7.2.2 Compact sets

The first definition of compact set refers to the concept of open cover. An open cover of a

set E in a metric space X is a collection {Gα} of open subsets of X such that E ⊂
⋃
α

Gα.

Definition 7.11. A subset K of a metric space X is said to be compact if every open cover

of K contains a finite subcover.

That is, a compact set K has the property that, if anybody covers K with an arbitrary

collection of open sets, you are always able to (in theory) pick finitely many of those open

sets that still covers K. To illustrate this concept, let’s see two examples.

Example 7.11. The interval (0, 1) is not compact, because {(0, x)}x∈(0,1) is an open cover

of it but no finite subcover of {(0, x)}x∈(0,1) covers it. Likewise, R is not compact.

Example 7.12. The interval [0, 1] is compact. Consider any collection of open sets {Gα}
that covers [0, 1]. Let A be the set of all points x ∈ [0, 1] such that [0, x] can be covered by

some finite subcover of {Gα}. Then 0 ∈ A. Let M = supA.

First, [0,M ] can be covered by a finite subcover. This is easy to see ifM = 0. IfM > 0,

we know that for any ε > 0,∃x ∈ A such that M − ε < x < M. Since [0, x] can be covered

by a finite subcover and for small enough ε, (M − ε,M ] is covered by some Gα that contains

M, [0,M ] is also covered by some finite subcover.

Second, ifM = 1 then we’re done. IfM < 1, then the finite subcover that covers [0,M ]

must also cover [0,M + δ] for small enough δ, because M is covered by one of the open sets.

This contradicts with M being the supremum.

An equivalent definition of compactness is through the existence of convergent subse-

quences.

Theorem 7.7. A subset K is compact if and only if every sequence in K has a convergent

subsequence with limit in K.

Proof. (⇒) Suppose not. Then there is a sequence {xn} in K which has no limit point in

K. That is, either {xn} does not converge at all or it converges but its limit point is not in
K. For any x ∈ K, there must be some εx > 0 such that the open ball Bεx(x) contains no

xn 6= x. That is, Bεx(x) contains at most one xn. Observe that {Bεx(x)}x∈X is an open cover

56



for X. However, since any finite subcover of {Bεx(x)}x∈X contains at most finitely many xn,
it does not cover {xn}; hence it does not cover X. Contradicts.

(⇐) we omit this proof.

While compactness is an abstract concept, for Euclidean spaces, it reduces to the

combination of closedness and boundedness of sets. A set S in Rk is bounded if {||x− y|| :
x,y ∈ S} is bounded.

Theorem 7.8 (Heine-Borel). A set S ⊂ Rk is compact if and only if it is closed and bounded.

Proof. For notational ease, we prove only for k = 1.

(⇒) First, if S ⊂ R is unbounded, then for every n ∈ N there is xn ∈ S such that

|xn| > n. The sequence {xn} does not converge, so does any of its subsequence. Therefore
S cannot be compact. Second, if S is not closed, then there is a convergent sequence {xn}
in S whose limit point x /∈ S. Since any subsequence of {xn} must also converge to x, there
is no subsequence which converges at a limit in S. Again, S cannot be compact.

(⇐) Suppose there is an open cover {Gα} of S which has no finite subcover containing
S. Since S is bounded, S ⊂ Br(x0) for some r ∈ R+ and x0 ∈ S. Let εn = r

2n
. Note that S

can be covered by finitely many open balls with centers in S and radius ε1 = r
2
. Therefore,

there must be (at least) one of the open balls which cannot be covered by any finite subcover

of {Gα}. Let it be Bε1(x1). Similarly, the ball Bε1(x1) can be covered by finitely many open

balls with radius ε2, and (at least) one of them, denoted by Bε2(x2), that cannot be covered

by any finite subcover of {Gα}, and satisfies

Bε1(x1) ∩Bε2(x2) 6= ∅.

We can define open balls Bεn(xn) iteratively, and none of them can be covered by

finitely many Gα. It can be shown that the centers of these open balls, x1, x2, ..., xn, ..., form

a Cauchy sequence, hence converge in S. (Try to prove it.) Suppose limn xn = x. Since

{Gα} is an open cover of S and x ∈ S, there must be some α0 such that x ∈ Gα0 . Also,

there must be some open ball Bδ(x) centered at x such that Bδ(x) ⊂ Gα0 . As xn → x, for

large enough n,

Bεn(xn) ⊂ Bδ(x) ⊂ Gα0 .
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That is, Gα0 covers Bεn(xn). This contradicts with the fact that Bεn(xn) cannot be

covered by finitely many Gα. So S must be compact.

Example 7.13. The Cantor set is compact, since it is the intersection of bounded and closed
sets.
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8 Continuity and the Weierstrass theorem

8.1 Continuity

In this section we study continuous functions from a metric space (X, dX) to a metric space

(Y, dY ).

Definition 8.1. Suppose f : X → Y and p ∈ X. We say that the limit of function f at p
is q, written as limx→p f(x) = q, if for every ε > 0, there exists δ > 0 such that x ∈ Nδ(p)

implies f(x) ∈ Nε(q).

More generally, we can define the limit of f : E → Y at p, where E ⊂ X and p is a

limit point of E. Note that p does not need to be in E. To help understand, you can view

both X and Y as Euclidean spaces or simply R. From now on, when no confusion may arise,
we use | · | to denote all metrics.

Example 8.1. Prove that limx→2 x
2 = 4.

The theorem below states an equivalent definition of the limit of a function.

Theorem 8.1. limx→p f(x) = q if and only if limn→∞ f(pn) = q for every sequence {pn} in
E, limn→∞ pn = p.

Proof. (⇒) Since limx→p f(x) = q, for any ε > 0,∃δ > 0, s.t., ∀x ∈ E with 0 < |x − p| <
δ, |f(x)− q| < ε. Suppose limn→∞ pn = p, then ∃N0 s.t. ∀n ≥ N0, 0 < |pn − p| < δ. For any

ε > 0, let N = N0, then for any n ≥ N0, |f(pn)− q| < ε. That is, limn→∞ f(pn) = q.

(⇐) Suppose limx→p f(x) 6= q. Then there exists ε > 0 such that for every δ > 0

there exists a point x ∈ E, 0 < |x − p| < δ but |f(x) − q| > ε. Let δn = 1
n
, we can

find a corresponding xn. The sequence {xn} converges to p but |f(xn) − q| > ε,∀n. As
limn→∞ f(xn) does not converge to q, we have a contradiction.

Example 8.2. The Dirichlet function is defined by

f(x) =

{
1, if x ∈ Q,
0, if x /∈ Q.
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For any x ∈ R, if {xn} is a sequence of rational numbers that converge to x, then
limn→∞ f(xn) = 1. If {xn} is a sequence of irrational numbers that converge to x, then
limn→∞ f(xn) = 0. Therefore, this function has no limits at any point.

Definition 8.2. Suppose f : X → Y and p ∈ X. Then f is continuous at p if limx→p f(x) =

f(p). If f is continuous at every x, we say that f is continuous.

By definition, if p is an isolated point of E, that is, if there is no sequence in E that

converges to p, then any function on E is continuous at p. This should not bother you as

isolated points are far from other points and are rarely interesting.

Theorem 8.2. A function f : X → Y is continuous if and only if f−1(V ) is open in X for

every open subset V of Y .

Proof. (⇒) Suppose f is continuous. Consider any p ∈ X such that p ∈ f−1(V ). Since

V is open, there exists a neighborhood Nε(f(p)) of f(p) such that Nε(f(p)) ⊂ V . As f is

continuous, there is a neighborhood Nδ(p) of p such that for all x ∈ Nδ(p), f(x) ∈ Nε(f(p)).

Therefore f(x) ∈ V and x ∈ f−1(V ). Since for all p ∈ f−1(V ) there is a neighborhood

Nδ(p) ⊂ f−1(V ), f−1(V ) is open.

(⇐) Suppose f−1(V ) is open for every open set V in Y . Pick any p ∈ X. We know that
Nε(f(p)) is open for any ε > 0. So f−1(Nε(f(p))) is open in X. Since p ∈ f−1(Nε(f(p))),

it has a open neighborhood Nδ(p) ⊂ f−1(Nε(f(p))). Obviously, for any x ∈ Nδ(p), f(x) ∈
Nε(f(p)). Therefore f is continuous.

Example 8.3. A continuous function may map open sets to non-open sets. Consider the
constant function f : R → Z such that f(x) = 1 for all x ∈ R. It maps all open sets to
the non-open set {1}. Also, f(x) = x2 maps (−1,+1) to [0, 1). There are also compli-

cated constructions of examples of functions that maps open sets to open sets but are not

continuous.

Example 8.4. Suppose the consumer has a rational preference � on bundles in RK and

faces a budget set B(p, w) = {x ∈ Rk : p · x ≤ w, x ≥ 0}. The consumer’s preference �
is continuous if for any x, y ∈ Rk with x � y,∃ε > 0 such that x′ ∈ Nε(x) and y′ ∈ Nε(y)

imply x′ � y′. (Debreu’s representation theorem states that if � is continuous, then it can
be represented by a continuous utility function u(·).)
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The consumer’s problem is to find the best bundle according to � from B(p, w). The

following result is a direct consequence of Weierstrass theorem. Here we show how it can be

proved directly without referring to utility function.

Claim 8.3. If � is continuous, then the consumer’s problem has a solution.

Proof. For any x ∈ B(p, w), let Inferior(x) = {y ∈ Rk : x � y}. Since � is continuous,
every Inferior(x) is an open set in RK . Suppose instead the consumer’s problem has

no solution, then every z ∈ B(p, w) is worse than some x ∈ B(p, w); that is, for every

z ∈ B(p, w), ∃x ∈ B(p, w) such that z ∈ Inferior(x). As a result,

B(p, w) ⊂ ∪x∈B(p,w)Inferior(x).

Hence the collection of sets Inferior(x), x ∈ B(p, w) form an open cover of B(p, w).

Since B(p, w) is compact, there must exist finitely many x1, . . . , xn ∈ B(p, w) such that the

Inferior(xi)’s cover B(p, w). That is, for any z ∈ B(p, w), z ∈ Inferior(xi), i.e., xi � z,

for some xi. Let x̄ be the best bundle among x1, . . . , xn. Then x̄ � z for all z ∈ B(p, w), a

contradiction.

8.2 The Weierstrass theorem

Let f : D ⊂ X → R. We consider conditions for the existence of a solution to the problem

max
x∈D

f(x).

For example, the utility optimization problem subject to compact constraint set. Ob-

viously, if D is finite, the maximum of f is always obtained. The Weierstrass theorem states

that we can generate this result to situations when D is compact. This is not quite sur-

prising, as compact sets can be viewed as generalizations of finite sets due to their finite

subcover property.

The theorem below states that continuous functions always map compact sets to com-

pact sets.

Theorem 8.4. Suppose f : X → Y is continuous. If D is compact in X, then f(D) is

compact in Y .
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As a result, if f : X → R, then f(D) is a compact subset of R, i.e., it is closed and
bounded.

Proof. Let {Vα} be an open cover of f(D), we will show that {Vα} always has a finite
subcover. Since f is continuous, for each Vα, f−1(Vα) is open. Obviously, ∪αf−1(Vα) is an

open cover of D. Since D is compact, there are finitely many indices, say α1, . . . , αn, such

that

D ⊂ f−1(Vα1) ∪ · · · ∪ f−1(Vαn).

Since f(f−1(E)) ⊂ E for every E ⊂ Y,

f(D) ⊂ f(f−1(Vα1) ∪ · · · ∪ f−1(Vαn)) ⊂ ∪αiVαi .

Therefore, {Vαi} is a subcover of f(D).

The same result does not hold if we replace compact sets with closed sets.

Example 8.5. Consider f : D → R such that D = [0,∞) and f(x) = 1/(1 + x2). Then f

is continuous and D is closed, but f(D) = (0, 1] is not closed.

Theorem 8.5 (Weierstrass). Suppose f is a continuous real function on a compact set
D ⊂ X, and

M = sup
x∈D

f(x),m = inf
x∈D

f(x).

Then there exist points p, q ∈ D such that M = f(p) and m = f(q).

That is, on the compact set D, f attains its maximum at p and minimum at q.

Proof. From the previous theorem, since D is compact, f(D) is a compact subset of R. The
axiom of completeness states that the supremum and infimum of a bounded set always exist,

and since f(D) is also closed, they exist in f(D).

When D is finite, conditions of the Weierstrass theorem are trivially satisfied. Also,

the theorem may fail to hold if either compactness or continuity is relaxed.

Example 8.6. Due to theWeierstrass theorem, the consumer’s utility maximization problem
maxu(x), s.t. p · x ≤ w, x ≥ 0 has a solution if u(·) is continuous.
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9 Correspondences

After solving optimization problems and while we are doing comparative statics, we are

usually interested in studying how will the parameters of an optimization problem affect the

maximal value and the set of maximizers of the problem. Define, in the utility maximization

problem,

v(p, I) = max
x∈B(p,I)

u(x) where B(p, I) = {x : p · x = I}, and

x̄(p, I) = arg max
x∈B(p,I)

u(x) ≡ {x ∈ Rn : u(x) = v(p, I)},

and in the profit maximization problem

v(p, w) = max
x∈Rn

pf(x)− w · x, and

x̄(p, w) = arg max
x∈Rn

pf(x)− w · x ≡ {x ∈ Rn : pf(x)− w · x = v(p, w)}.

The notation "argmax" stands for "the set of arguments in the domain that maximizes",

and thus arg maxx∈D f(x) denotes the set of maximizers x ∈ D that maximize f(x) over D.

The maximal values v(p, I) and v(p, w) map parameters into real numbers, but each of

B(p, I), x̄(p, I) and x̄(p, w) maps parameters to sets.

Similarly, the Nash equilibrium solution maps each normal-form game to a set of Nash

equilibria. These set-valued (or multi-valued) mappings are called correspondences, as we

now formally define.

Definition 9.1. A correspondence from D to Y , written as ϕ : D � Y, is a rule that assigns

a set ϕ(x) ⊂ Y to every x ∈ D.

The rightwards two-headed arrow "�" is used to distinguish a correspondence from
a function (note: there is no standard notation for this). Although correspondences can be

defined for general domain and range spaces, since for most of the time we work with only

Euclidean spaces, throughout, we restrict attention to D ⊂ X = Rl and Y = Rk.

If ϕ(x) contains precisely one element for each x, i.e., if ϕ(x) is always single-valued,

then ϕ(·) can be viewed as a function. Similarly, a correspondence ϕ(·) is nonempty, convex,
closed or compact valued if ϕ(x) is nonempty, convex, closed or compact, respectively, for

every x ∈ D.
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9.1 Hemicontinuity

We can also view the correspondence ϕ as a function that maps D into 2Y . Given that

correspondences are set-valued, the continuity of correspondences is not as direct as that of

functions. Given any sequence {xn} such that xn → x in D, we now need to consider what

it means by saying that a sequence of sets ϕ(xn) converges to ϕ(x).

Definition 9.2. A correspondence ϕ : D ⊂ Rl � Rk is upper hemicontinuous (uhc) at
x ∈ D, if for any open set U such that ϕ(x) ⊂ U, there exists ε > 0 such that

ϕ(x′) ⊂ U,∀x′ ∈ Nε(x) ∩D.

Definition 9.3. A correspondence ϕ : D ⊂ Rl � Rk is lower hemicontinuous (lhc) at x ∈ D,
if for any open set U such that ϕ(x) ∩ U 6= ∅, there exists ε > 0 such that

ϕ(x′) ∩ U 6= ∅,∀x′ ∈ Nε(x) ∩D.

Definition 9.4. A correspondence is continuous at x if it is both upper and lower hemicon-
tinuous at x.

Let’s first discuss the difference between these two concepts and to compare them with

the continuity of functions. Let the

ϕ−1(U) = {x ∈ D : ϕ(x) ⊂ U} and
ϕ−1∗(U) = {x ∈ D : ϕ(x) ∩ U 6= ∅}

denote the upper and lower inverses of U under ϕ, which define the set of x at which

all values in ϕ(x) belong to U, and the set of x at which some value in ϕ(x) belongs to U ,

respectively. Recall that a function f is continuous if for any open set U such that f(x) ∈ U,
there exists δ > 0 such that f(x′) ∈ U,∀x′ ∈ Nδ(x). So we see that both uhc and lhc

generalize the continuity of functions to correspondences, but under different views of what

it means by "ϕ(x) ∈ U": (i) uhc, all y ∈ ϕ(x) is in U ; (ii) lhc, exists y ∈ ϕ(x) which is in U .

These views lead to different definitions of pre-image.

Theorem 9.1. Suppose ϕ : D � Rk is a single-valued correspondence. Then both the uhc
and lhc of ϕ is equivalent to the continuity of ϕ as a function.
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Remark 9.5. Hemicontinuity can also be defined via the Hausdorff metric on compact
subsets of Rk. Recall that d(y, A) = infa∈A d(y, a). So we can define Nε(A) ≡ {y ∈ Rk :

d(y, A) < ε}. If we restrict attention to compact-valued correspondences, we will have the
following equivalent definitions:

We say that ϕ(x) is (metric) upper hemicontinuous at x if for all ε > 0,∃δ > 0, such

that x′ ∈ Nδ(x)∩D implies ϕ(x′) ⊂ Nε(ϕ(x)), and ϕ(x) is (metric) lower hemicontinuous at

x if for all ε > 0,∃δ > 0, such that x′ ∈ Nδ(x) ∩D implies ϕ(x) ⊂ Nε(ϕ(x′)).

Remark 9.6. Hemicontinuity is sometimes called semicontinuity, independent of the semi-
continuity of functions. More importantly, the definition of hemicontinuity is not fully agreed

upon, hence different books and notes may offer somewhat different treatments of it. When

reading them, pay attention to: (i) the exact definiton of uhc and lhc; (ii) whether compact-

valuedness is implicitly assumed for various results.

Intuitively, if ϕ is uhc at x, then when we move away from x to some nearby x′, there

should not be sudden explosion in the set of values from ϕ(x) to ϕ(x′) (informally, if

x′ ∈ Nε(x) and ϕ(x) is a subset of any open set U that slightly enlarges ϕ(x), then ϕ(x′)

should also be a subset of U). If ϕ is lhc at x, then when we move away from x to some

nearby x′, there should not be sudden shrink in the set of values from ϕ(x) to ϕ(x′)

(informally, if x′ ∈ Nε(x) and y ∈ ϕ(x), then ϕ(x′) should also contain y or something in a

small neighborhood U of y). For illustration, let’s see the following very simple examples.

Example 9.1. Let ϕ : [0, 2]� [0, 2] be defined as

ϕ(x) =

{
{1}, if 0 ≤ x < 1

[0, 2], if 1 ≤ x ≤ 2.

ϕ is uhc but not lhc at x = 1. Note the sudden shrink of ϕ(x) when move away from

1 to its left.

Example 9.2. Let ϕ : [0, 2]� [0, 2] be defined as

ϕ(x) =

{
{1}, if 0 ≤ x ≤ 1

[0, 2], if 1 < x ≤ 2.

ϕ is lhc but not uhc at x = 1. Note the sudden explosion of ϕ(x) when move away

from 1 to its right.
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Example 9.3. Let ϕ : [0, 1]� [0, 1] be defined as

ϕ(x) =

{
[0, 1] ∩Q, if x ∈ [0, 1]\Q;

[0, 1]\Q, if x ∈ [0, 1] ∩Q.

ϕ is not uhc (at x ∈ [0, 1] ∩Q) but is lhc. In particular, for any x ∈ [0, 1] ∩Q, ϕ(x) ⊂
(0, 1), but for any irrational number x′ nearby, ϕ(x′) contains 0 and 1, which are not included

in (0, 1).

The theorem below presents equivalent definitions of uhc and lhc via sequences.

Theorem 9.2. Let ϕ : D ⊂ Rl � Rk be a correspondence.

1. Suppose ϕ is nonempty and compact-valued. Then ϕ is upper hemicontinuous at x ∈
D if and only if for every sequence xn → x and yn ∈ ϕ(xn), there is a convergent

subsequence of {yn} that converges to some y ∈ ϕ(x).

2. ϕ is lower hemicontinuous at x if and only if xn → x and y ∈ ϕ(x) imply that there is

a sequence yn ∈ ϕ(xn) with yn → y.

Proof. (1, ⇒) Suppose ϕ(x) is uhc at x, xn → x and yn ∈ ϕ(xn). Since ϕ(x) is compact,

there is a bounded open set U such that ϕ(x) ⊂ U . The uhc of ϕ implies that there exists

ε > 0, such that ∀x′ ∈ Nε(x), ϕ(x′) ⊂ U . Hence there exists N such that ∀n ≥ N, yn ∈
ϕ(xn) ⊂ U . Therefore, {yn} is eventually in U , hence bounded, and has a convergent

subsequence. The limit y of this convergent subsequence has to be in ϕ(x). Otherwise, let

U ′ = {y′ : d(y′, ϕ(x)) < 1
2
d(y, ϕ(x))}. Then ϕ(x) ⊂ U ′ but y /∈ Ū ′, where Ū ′ is the closure

of U ′. Then again, yn is eventually in U ′ and cannot have any subsequence converge to y,

which is outside of Ū ′.

(1, ⇐) Suppose for every sequence xn → x and yn → ϕ(xn), there is a convergent

subsequence of {yn} that converges to some y ∈ ϕ(x). Suppose instead ϕ(x) is not uhc.

Then there is an open set U with ϕ(x) ⊂ U, and a sequence (let εn = 1
n
, for example)

zn → x, yn ∈ ϕ(zn), but yn /∈ U . Since U ⊃ ϕ(x) is open, such a sequence {yn} cannot have
any subsequence that converges into ϕ(x). We have a contradiction.

(2, ⇒) Suppose ϕ(x) is lhc, xn → x and y ∈ ϕ(x). For each natural number p, the set

Gp = {y′ ∈ Rk : d(y′, y) < 1
p
} is open, and Gp ∩ ϕ(x) 6= ∅. Since ϕ(x) is lhc and xn → x,
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there exists Np such that for all n ≥ Np, ϕ(xn)∩Gp 6= ∅. Without loss of generality, assume
Np < Np+1,∀p. For any Np ≤ n < Np+1, pick yn from ϕ(xn) ∩Gp, and for any n < N1, pick

yn arbitrarily from ϕ(xn). Then for any n ≥ Np, d(yn, y) < 1
p
; that is, yn → y.

(2, ⇐) Suppose whenever xn → x and y ∈ ϕ(x), there is a sequence yn ∈ ϕ(xn) with

yn → y. Let U be any open set such that ϕ(x) ∩ U 6= ∅, and let y ∈ ϕ(x) ∩ U . Suppose
instead ϕ is not lhc. Then for each n, there is xn ∈ N 1

n
(x) with ϕ(xn)∩U = ∅. Since xn → x,

by assumption, there exists yn ∈ ϕ(xn) such that yn → y. But this is not possible, since all

such {yn} are outside of an open set U, which contains y. We have a contradiction.

Definition 9.7. The graph of a correspondence ϕ : D ⊂ Rl � Rk is defined as

Gr(ϕ) = {(x, y) ∈ D × Rk : y ∈ ϕ(x)}.

When Gr(ϕ) is closed, we say that ϕ has closed graph. Obviously, if ϕ has closed

graph, then ϕ(x) is closed in Rk for all x ∈ D; that is, ϕ is closed-valued.

Definition 9.8. A correspondence ϕ : D ⊂ Rl � Rk is locally bounded if for every x ∈ D,
there exists ε > 0 and a bounded set Y (x) ⊂ Rk, such that for all x′ ∈ Nε(x) ∩D,ϕ(x′) ⊂
Y (x).

Theorem 9.3. Suppose ϕ is compact-valued. Then

1. if ϕ is uhc, then it has closed graph, and

2. if ϕ is also locally bounded, then it has closed graph implies it is uhc.

Proof. (1) Suppose ϕ is uhc and (xn, yn)→ (x, y). We only need to show that (x, y) ∈ Gr(ϕ);

that is, y ∈ ϕ(x). Since ϕ is uhc and compact-valued, from Theorem 9.2, there is a convergent

subsequence of yn that converges to some y′ ∈ ϕ(x). Since yn → y, it has to be that

y = y′ ∈ ϕ(x).

(2) Suppose ϕ is locally bounded and has closed graph, but it is not uhc. Then there

is an open set U such that ϕ(x) ⊂ U, but there is no Nε(x) ⊂ ϕ−1(U). In particular, for

each n, there exists xn ∈ N 1
n
(x) such that ϕ(xn) ∩ U c 6= ∅. That is, there exists xn → x

and yn ∈ ϕ(xn) such that yn /∈ U . Since ϕ is locally bounded, there exist a bounded set
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Y (x) and N, such that for all n ≥ N, yn ∈ ϕ(xn) ⊂ Y (x). Therefore, yn has a convergent

subsequence ynp . Since ϕ has closed graph, xnp → x and ynp → y, we must have y ∈ ϕ(x).

However, this would contradict with yn /∈ U ⊃ ϕ(x),∀n and U is open.

Example 9.4. Let ϕ : [0,∞) � R be a correspondence such that, ϕ(x) = { 1
x
} if x > 0

and ϕ(0) = {0}. This correspondence is equivalent to a function. It is not locally bounded
because at x = 0, for no ε > 0 and can we find such a bounded Y (0) ⊂ R.

Moreover, it is compact-valued and has closed graph, but is not uhc, as it is not

continuous when viewed as a function.

9.2 The Maximum Theorem

Consider a real-valued function f(·, θ) : S ⊂ Rn → R, where θ ∈ Θ ⊂ Rk is the parameter of
this function, and Θ is the set of parameters. Suppose S is compact and let C : Θ � S be

the constraint correspondence. Then

max
x∈C(θ)

f(x, θ)

is a parameterized constrained optimization problem. Define the value and the set of

maximizers of the optimization problem, respectively, as

v(θ) = max
x∈C(θ)

f(x, θ), and

x̄(θ) = arg max
x∈C(θ)

f(x, θ).

Example 9.5. In the standard utility maximization problem, θ = (p, I), C(θ) = {x : p ·
x = I}, f(x, θ) = u(x) for all θ, and v(p, I) (the indirect utility function) and x̄(p, I) (the

Marshallian demand function) were previously defined.

The following theorem is very important in mathematic economics. It is often used to

prove conditions needed to apply the Brouwer and Kakutani fixed-point theorems.

Theorem 9.4 (Berge’s Maximum Theorem). Suppose f : S × Θ → R is a continuous

function and C : Θ� 2S is a compact-valued continuous correspondence (i.e., both uhc and

lhc in θ). Then
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1. v(θ) is a continuous function of θ, and

2. x̄(θ) is a compact-valued upper hemicontinuous correspondence of θ.

Proof. Due to the Weierstrass theorem and the compact-valuedness of C(θ), for each θ, there

exists a maximizer for each parameterized optimization problem. Hence x̄(θ) is nonempty

for each θ. For any θn → θ and any x̄n ∈ x̄(θn) ⊂ C(θn) (so f(x̄n, θn) = v(θn)), since C(·)
is compact-valued and uhc, by Theorem 9.2, there is a convergent subsequence {x̄nk} such
that x̄nk → x, for some x ∈ C(θ).

Now we show that x ∈ x̄(θ). Suppose not, then there exists x′ ∈ x̄(θ) such that

f(x′, θ) > f(x, θ). Since C(·) is lhc, θnk → θ, and x′ ∈ C(θ), there is a sequence xnk ∈ C(θnk),

such that xnk → x′. We have constructed by now,

(x̄nk , θnk)→ (x, θ) and (xnk , θnk)→ (x′, θ).

By definition, x̄nk ∈ x̄(θnk), so f(x̄nk , θnk) ≥ f(xnk , θnk). Therefore, due to the conti-

nuity of f,

f(x, θ) = lim
k
f(x̄nk , θnk) ≥ lim

k
f(xnk , θnk) = f(x′, θ).

This contradicts with f(x′, θ) > f(x, θ). Results of the theorem are now immediate.

1. Suppose v(·) is not continuous at θ. Then there exist ε > 0 and θn → θ such that for

all n, |v(θn) − v(θ)| ≥ ε. From the above, this is not possible, because we can find a

subsequence θnk → θ such that v(θnk) = f(x̄nk , θnk)→ f(x, θ) = v(θ).

2. We have shown that for any θn → θ and x̄n ∈ x̄(θn), there is a convergent subsequence

x̄nk that converges to some x ∈ x̄(θ). By Theorem 9.2, x̄(θ) is uhc in θ. The compactness

of x̄(θ) is straightforward from the compactness of C(θ) and the continuity of f .

Example 9.6. When f(x, θ) is strictly quasiconcave in x and continuous, and C(·) is convex
and compact-valued, then for each θ, x̄(θ) is single-valued. By Berge’s maximum theorem,

x̄(θ) is continuous as a function.
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From Berge’s theorem, the continuity of f and C cannot ensure the lsc of x̄(θ); that is,

part of the continuity is lost during optimization. This can be illustrated by the following

example.

Example 9.7. Let S = Θ = C(θ) = [0, 1], for all θ, and consider f : S ×Θ→ [0, 1] defined

by f(x, θ) = θx. Obviously, x̄(θ) = {1}, for all θ > 0 and x̄(0) = [0, 1]. So x̄(θ) is not lhc at

0.
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10 Dynamic programming

10.1 Contraction mapping (fixed-point) theorem

Definition 10.1. Let (X, d) be a metric space. A mapping f : X → X is a contraction

mapping if there exists a number β ∈ (0, 1) such that for all x, y ∈ X,

d(f(x), f(y)) ≤ βd(x, y).

It is easy to prove that every contraction mapping is continuous. Function f moves

(maps) each point x ∈ X to some point f(x) ∈ X. If x stays at where it is when being

moved, then x is said to be a fixed point of f .

Definition 10.2. Suppose f : X → X. If f(x) = x, then we say that x is a fixed point of f .

Example 10.1. The function f(x) = x
2
is a contration mapping from R to R, and it has a

fixed point x = 0.

Theorem 10.1 (Contraction mapping). If X is a complete metric space and f : X → X is

a contraction mapping, then there exists one and only one x ∈ X such that f(x) = x.

Proof. Pick x0 ∈ X arbitrarily, and define {xn} recursively by setting

xn+1 = f(xn), for n = 0, 1, 2, . . . .

For n ≥ 1, we have

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ βd(xn, xn−1).

Hence

d(xn+1, xn) ≤ βnd(x1, x0).
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And for n < m,

d(xn, xm) ≤
m∑

i=n+1

d(xi, xi−1)

≤ (βn + βn+1 + · · ·+ βm−1)d(x1, x0)

= βn(1 + β + · · ·+ βm−n−1)d(x1, x0)

≤ βn
1− βm−n

1− β d(x1, x0)

≤ βn
1

1− βd(x1, x0).

Therefore, for any ε > 0, we can find N such that m,n ≥ N implies d(xn, xm) < ε.

That is, {xn} is a Cauchy sequence. Since X is complete, {xn} converges to some x ∈ X.

Since f is a contraction mapping, it is continuous. Therefore

f(x) = lim
n
f(xn) = lim

n
xn+1 = x.

That is, x is a fixed point of f . To see the uniqueness of the fixed point, observe that

if f(x) = x and f(y) = y, then d(f(x), f(y)) = d(x, y) ≤ βd(x, y). Since β < 1, we must

have d(x, y) = 0 and therefore x = y.

This contraction mapping theorem is also called the Banach fixed point theorem. Note

that while whether a function is a contraction mapping depends on the metric that is being

used (under the discrete metric no function is a contraction mapping), the concept of fixed

point does not. Therefore, to apply the theorem, we first need to find an appropriate metric.

This theorem has many applications, among which the Bellman equation is of particular

interest to economists.

10.2 The optimal growth model

Suppose an agent is endowed with a captital stock k0 > 0, her utility function is u(c), and

she can use k units of captital to produce an output f(k). In each period t ∈ {0, 1, . . .},
given her current capital stock kt, the agent produces f(kt), saves kt+1 as the capital stock

of the next period, and consumes ct = f(kt)−kt+1. The agent discounts next period’s utility
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by β ∈ (0, 1).

We assume that both u(·) and f(·) are countinuously differentiable, strictly concave
and strictly increasing on R+. Moreover, assume u(·) is bounded, u′(0) = f ′(0) =∞ (Inada’s

condition), f ′(∞) = 0, and f(0) = 0.

At t = 0, the agent chooses an saving (or consumption) path that maximizes her total

discounted utility. The agent’s problem is a infinite-horizon dynamic optimization problem

max{kt}∞t=1

∞∑
t=0

βtu(f(kt)− kt+1),

0 ≤ kt+1 ≤ f(kt),∀t = 0, 1, . . .

k0 > 0 is given.

In an equivalent manner, we can define {ct}∞t=0 as the choice variables, so that the agent

decides how much to consume in each period. Note that since u is bounded, the value of

this problem is bounded.

Example 10.2 (Cake-eating). The problem can be conveniently viewed as a cake-eating

problem. The agent has a cake of size k0 and decides in each period how much to eat and

how much to save for future. If f(k) = k, then each unit of cake saved for future values a

unit. If f(k) = (1− δ)k, it means that the saved cake depreciates by δ each period.

10.3 Finite-horizon problem: direct solution

Before solving the infinite-horizon problem, let’s first try to gain some intuition from solving

the much simpler finite version of it. Suppose the agent lives only until period T , and T is

known ex ante. The agent chooses (k1, . . . , kT+1) ∈ RT+1 to maximize her total discounted

utility at t = 0,

max{kt}T+1t=1

T∑
t=0

βtu(f(kt)− kt+1),

s.t. 0 ≤ kt+1 ≤ f(kt),∀0 ≤ t ≤ T

k0 > 0 is given.

We can now set up the Lagrangean of this problem and solve it using Kuhn-Tucker

conditions.

L(k1, . . . , kT+1, λ) =
T∑
t=0

βtu(f(kt)− kt+1) +
T∑
t=0

λt[f(kt)− kt+1] +
T+1∑
t=1

λ′tkt.
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Although this looks to be complicated, our assumptions on u(·) and f(·) have basically
ruled out all corner solutions. Note that constraint set is a convex subset of RT+1, and since

u′(0) = f ′(0) =∞, at the optimum, 0 < k̄t < f(k̄t+1),∀t = 0, . . . , T, and obviously k̄T+1 = 0.

So except for t = T + 1, we only need to care about first-order conditions.

The first-order conditions (FOC) are

u′(f(kt−1)− kt) = βu′(f(kt)− kt+1) · f ′(kt), ∀t = 1, . . . , T.

Different from the usual FOC for a static problem, here we have a sequence of FOCs,

one for each period t. These intertemporal FOCs are called the Euler equations in dynamic
programming; they are necessary for optimal resource allocation across time. In terms of

optimal consumption, these equations can be equivalently expressed as

u′(ct−1) = βu′(ct) · f ′(kt), ∀t = 1, . . . , T.

Let v(k0) be the value of the optimization problem. Due to the Envelope theorem,

v′(k0) = u′(f(k0)− k1) · f ′(k0)

= βtu′(f(kt)− kt+1) · f ′(k0)f ′(k1) · · · f ′(kt),∀t = 1, . . . , T.

To see the intuition of the FOCs, consider saving one more unit of capital from period

t− 1 to period t (or any other later period) on the optimal path. By doing so, the marginal

decrease of utility in period t−1 is u′(ct−1) and the marginal increase of production output in

period t is f ′(kt). If this amount is consumed in period t, the total increase of period t utility

is f ′(kt) · βu(ct) (discounted to period t− 1 for direct comparison), and if it is consumed in

period t + 1, the total increase of utility is f ′(kt)f ′(kt+1)β2u′(ct+1). On the optimal path,

due to the FOCs, the loss and potential benefit at any later period are equal, hence no such

reallocation of resources across time is benefitable. As a result, on the optimal path, if the

agent is given an extra unit of capital, she will be indifferent among consuming it in any

period.

The FOCs for t = 1, . . . , T form a second-order difference equation with two terminal

conditions: k0 is given, and kT+1 = 0. In general, it is solvable.

Example 10.3. Suppose u(c) = ln c and f(k) = k. Then the FOCs are kt − kt+1 =
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β(kt−1 − kt),∀t = 1, . . . , T. Therefore,

k0 − kT+1 = (k0 − k1) + (k1 − k2) + · · ·+ (kT − kT+1)

= (1 + β + · · ·+ βT )(k0 − k1).

Since kT+1 = 0, we have

c0 = k0 − k1 =
1

1 + β + · · ·+ βT
k0.

And k2, . . . , kT can be derived inductively.

10.4 Finite-horizon dynamic programming

Suppose we have already known that for each finite number T and initial endowment k0, the

value of the T -period optimal growth problem is vT (k0). Then by backwards induction
or the Principle of optimality (due to Richard Bellman), which breaks a problem into

smaller subproblems, we have the Bellman equation

vT+1(k0) = max
k1

u(f(k0)− k1) + βvT (k1).

Given that the agent faces a T+1 period problem today, if she knows the optimal value

vT (k1) of a T -period problem under each endowment k1, she only needs to trade-off between

today’s consumption and the T -period problem which she will face tomorrow. The agent

anticipates that given each of today’s consumption f(k0)−k1, she will always be maximizing

in the future, so the consequence on future is βvT (k1). By taking the consequences of different

k1’s into consideration, she choose the optimal k1.

From the first-order condition of this problem and the Envelope theorem,

βv′T (k1) = u′(f(k0)− k1), and

v′T+1(k0) = u′(f(k0)− k1)f ′(k0) = βv′T (k1)f ′(k0).

By now it seems that we’re going nowhere, since we don’t actually know vT (k0) for

each T and k0. This is not quite true. We know v1(k0) for each k0, since T = 1 implies the
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agent only lives for one period, i.e., v1(·) = u(·).

The value of the T = 2 period problem, given endowment k0, is

v2(k0) = max
k1

u(f(k0)− k1) + βv1(k1)

= max
k1

u(f(k0)− k1) + βu(k1).

We can then solve for k1 through the FOC

u′(f(k0)− k1) = βu′(k1).

By plugging the solution of k1 as a function of k0 back into v2(k0), we will have the

functional form of v2(k0). We can then derive the functional form vT (k0) for each T ≥ 3

recursively.

Example 10.4. Suppose u(c) = ln c and f(k) = k. Now consider vT (k0). Obviously, v1(k) =

u(k) = ln k,∀k. For T = 2, due to the FOC,

1

k0 − k1

= β
1

k1

⇒ k̄1 =
β

1 + β
k0.

Hence the functional form for T = 2 is v2(k0) = ln(k0 − k̄1) + β ln k̄1 = A2 + B2 ln k0,

where A2 = ln 1
1+β

+ β ln β
1+β

, B2 = 1 + β. For T ≥ 3, vT (k0) can be derived recursively. The

value functions turn out to have the same form vT (k0) = AT +BT ln k0.

10.5 Infinite-horizon dynamic programming

We now come back to the infinite period dynamic optimization problem.

max{kt}∞t=1

∞∑
t=0

βtu(f(kt)− kt+1),

s.t. 0 ≤ kt+1 ≤ f(kt),∀t = 1, 2, . . .

k0 = k > 0 is given.

Let v(·) be the value function of this optimization problem. Then from the principle
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of optimality, we have the following Bellman equation,

v(k) = max
0≤k′≤f(k)

u(f(k)− k′) + βv(k′),

where k is the initial endowment and k′ is the capital saved for tomorrow. As the

endowment of tomorrow’s problem, k′ will generate an optimal value of v(k′), according to

the value function v(·). Note that now time does not enter this functional equation. This
is the essence of the stationarity of the problem. Since the agent faces an infinite-horizon
problem today, after she decides how much to consume/save today, the problem left for

tomorrow is still an infinite-horizon problem. The difference between today and tomorrow’s

problem lies only in the endowments; consequently, the functional form of the value function

does not change.

Theorem 10.2. The solution v(·) to the Bellman equation is the value function of the
infinite-horizon dynamic optimization problem.

Proof. First, let k1, k2, . . . be any feasible saving path. Then

v(k0) = max
0≤k′≤f(k0)

u(f(k0)− k′) + βv(k′)

≥ u(f(k0)− k1) + βv(k1)

≥ u(f(k0)− k1) + β[u(f(k1)− k2) + βv(k2)]

≥ · · ·
≥

∞∑
t=0

βtu(f(kt)− kt+1).

To see the first inequality, note that since k1 is the prescribed saving level, it cannot

perform better than the optimal one which generates v(k0). All other inequalities follow the

same intuition.

Second, given v(·), let k̄1 ∈ arg max0≤k′≤f(k0) u(f(k0)−k′)+βv(k′). And recursively, let

k̄2 ∈ arg max0≤k′≤f(k̄1) u(f(k̄1)−k′)+βv(k′), and k̄t ∈ arg maxu(f(k̄t−1)−k′)+βv(k′),∀t > 2.
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All together, we have

v(k0) = u(f(k0)− k̄1) + βv(k̄1)

= u(f(k0)− k̄1) + β[u(f(k̄1)− k̄2) + βv(k̄2)]

= · · ·
=

∞∑
t=0

βtu(f(k̄t)− k̄t+1).

Therefore, there actually exists a saving path k̄1, k̄2, . . . that generates value v(k0). As

a result, v(k0) is the (optimal) value of the dynamic optimization problem.

Theorem 10.3. There exists a unique solution v(·) to the Bellman equation.

Assume that the endowment k belongs to K, which is a compact subset of R. Recall
that u(f(k) − k′) is continuous in (k, k′). Let C(K) = {v : K → R} be the set of real-
valued continuous functions on K, endowed with the sup-norm. So for functions v, w ∈
C(K), ||v − w|| = supk∈K |v(k)− w(k)|.

Proof. For each function v ∈ C(K), define

Tv(k) = max
0≤k′≤f(k)

u(f(k)− k′) + βv(k′).

Note that both sides of this equation are functions of k. Since u(f(k)− k′) + βv(k′) is

continuous in (k, k′), and the constraint correspondence that maps k to [0, f(k)] is continuous,

due to Berge’s Maximum theorem, Tv(k) is continous. That is, Tv ∈ C(K); T maps from

C(K) to C(K).

Let k̄ be the maximizer of right-hand-side optimization problem under function v. Then

for each k ∈ K and function w ∈ C(K),

T v(k) = u(f(k)− k̄) + βv(k̄)

= u(f(k)− k̄) + βw(k̄) + βv(k̄)− βw(k̄)

≤ Tw(k) + β||v − w||.
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Similarly, for each k ∈ K,Tw(k) ≤ Tv(k) + β||v − w||. Together we have,

||Tv − Tw|| = sup
k∈K
|Tv(k)− Tw(k)| ≤ β||v − w||.

Since β ∈ (0, 1), T is a contraction mapping on C(K). Due to the Contraction mapping

theorem, T has a unique fixed point v∗ such that Tv∗ = v∗. That is, v∗ solves the Bellman

equation.

From the FOC of the Bellman equation and the Envelope theorem, we have

βv′(k′) = u′(f(k)− k′), and
v′(k) = u′(f(k)− k′) · f ′(k).

Let k′′ be the optimal saving of tomorrow’s problem, then v′(k′) = u′(f(k′)−k′′) ·f ′(k′).
Together we have the Euler equation

u′(f(k)− k′) = βu′(f(k′)− k′′) · f ′(k′).

In terms of today and tomorrow’s optimal consumption, u′(c) = βu′(c′) · f ′(k′). And
along the optimal saving/consumption path, this condition holds in every period.

In our setup, k is the state variable which describes the current endowment, and k′ is

the control variable, which is the choice to be made. The function k′ = g(k) that maps k to

k′ is called the policy function. If the value function v(k) is given, we can derive k′ = g(k)

from it. In applications, instead, if we observe states and the respective actions taken, we

can use those data to estimate parameters of the policy function.

However, it is in general not possible to find a closed form solution to the value function.

Researchers usually try to characterize some properties of the solution, or if necessary, solve

it numerically. The direct way to do that is to start with a guess of a feasible policy function

g0(k) (for example, g0(k) = θf(k), θ ∈ (0, 1)). This policy function will generate a value

function v0 ∈ C(K). By applying the contraction mapping T, we can generate a new value

function

v1(k) = Tv0(k) = max
0≤k′≤f(k)

u(f(k)− k′) + βv0(k′),
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and recursively, a sequence of value functions v2 = Tv1, v3 = Tv2, . . . . According to the

contraction mapping theorem, Tvn will eventually converge (under the sup-norm) to the

value function v—the fixed point of T . Since v0(k) = u(f(k) − g0(k)) + βv0(g0(k)), by

definition, v1(k) ≥ v0(k),∀k. Due to the same argument, each time we apply T, the value
function improves.

That said, in rare cases, we may be able to guess the functional form of the value

function, based on the functional forms of finite-horizon problems.

Example 10.5. Suppose u(c) = ln c and f(k) = k. From Example 10.4, a good guess of the

solution to the infinite-horizon problem takes the form v(k) = A+B ln k. If so, the Bellman

equation is,

A+B ln k = max
k′

ln(k − k′) + β(A+B ln k′), for all k.

The FOC on k′ is − 1
k−k′ + βB 1

k′ = 0. Solving for k′, we have k′ = βB
1+βB

k.

Plugging this into the Bellman equation,

A+B ln k = ln
1

1 + βB
k + β(A+B ln

βB

1 + βB
k)

= [βA+ βB ln βB − (1 + βB) ln(1 + βB)] + (1 + βB) ln k.

Since this equation holds for all k,B = 1 + βB and B = 1
1−β . Similarly, A =

1
(1−β)2

[β ln β + (1− β) ln(1− β)].

The policy function is

k′ = g(k) =
βB

1 + βB
k = βk, and

c = k − k′ = (1− β)k.
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11 Fixed-point theorems

Fixed points are closely related to the concepts of stability and equilibrium. This is because

by definition, when the process described by f reaches a fixed point, it stays there forever.

Fixed point theorems provide conditions for the existence of fixed points and are very useful

tools in economics. For different applications, we may need different such theorems. We’ve

studied the contraction mapping theorem; in this lecture, we study more of the commonly

used fixed point theorems.

11.1 Brouwer’s fixed point theorem

Definition 11.1. For a function f : A → A, if x = f(x) for some x ∈ A, then x is a fixed
point of f .

Theorem 11.1 (Brouwer). Suppose A ⊂ Rn is nonempty, compact and convex, and f :

A→ A is a continuous function. Then f(·) has a fixed point; that is, there is an x ∈ A such
that x = f(x).

The proof of this theorem is very complicated, and we won’t go as far to prove it.

However, the proof to the simplest version of the theorem, where A = [0, 1], is pretty

straightforward.

Example 11.1. Suppose f : [0, 1] → [0, 1] is continuous. Define φ(x) = f(x) − x. Then

φ(0) = f(0)− 0 ≥ 0, φ(1) = f(1)− 1 ≤ 0. By the continuity of φ and the intermediate value

theorem, there exists x ∈ [0, 1] such that φ(x) = 0, that is, f(x) = x.

11.2 Kakutani’s fixed point theorem

In many applications, we need results on the existence of fixed points for correspondences.

The most well-known among such applications is probably the existence of Nash equilibrium

for finite normal-form games. Kakutani’s fixed point theorem is a direct generalization of

Brouwer’s theorem from functions to correspondences.

Definition 11.2. For a correspondence ϕ : A� A, if x ∈ ϕ(x) for some x ∈ A, then x is a
fixed point of ϕ.
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Theorem 11.2 (Kakutani). Suppose that A ⊂ Rn is nonempty, compact and convex, and
that ϕ : A � A is an upper hemicontinuous correspondence from A into itself such that

ϕ(x) ⊂ A is nonempty, convex and closed for every x ∈ A. Then ϕ(·) has a fixed point; that
is, there is an x ∈ A such that x ∈ ϕ(x).

Convexity (of both the domain and value) is crucial for both Brouwer and Kakutani’s

theorems. The simple example below illustrates how Kakutani’s theorem could fail when

ϕ(·) is not convex valued.

Example 11.2. Consider ϕ : [0, 1]� [0, 1] defined by

ϕ(x) =


{3

4
}, if x ∈ [0, 1

2
)

{3
4
, 1

4
}, if x = 1

2

{1
4
}, if x ∈ (1

2
, 1].

ϕ has no fixed point; this is because ϕ(1
2
) is not convex (not an interval).

Remark 11.3. In Kakutani’s theorem, we can replace upper hemicontinuity of ϕ and closed-
valuedness with the closed-graph property of ϕ. Moreover, the theorem also holds when the

upper hemicontinuity of ϕ is replaced by lower hemicontinuity (Michael’s theorem).

Remark 11.4. The contraction mapping theorem works for functions, and crucially, it

does not require the domain of the function to be convex. For correspondences, Nadler’s

fixed point theorem generalizes the contraction mapping theorem. It requires the corre-

spondence to be contractive under the Hausdorff metric. Let (X, d) be a complete metric

space. A correspondence ϕ : X � X is contractive if there exists β ∈ (0, 1) such that

dH(ϕ(x), ϕ(x′)) ≤ βd(x, x′) for all x, x′ ∈ X.

11.3 Tarski’s fixed point theorem

Tarski’s fixed point theorem is studied under general order structures, so we need some

notations to formally state the theorem.

A partial order is a binary relation ≤ on a set X such that x ≤ x (reflexive), x ≤ y and

y ≤ x imply x = y (antisymmetric), and x ≤ y and y ≤ z implies x ≤ z (transitive), for all

x, y, z ∈ X. A set X endowed with a partial order ≤ is called a partially ordered set, or
poset, and is denoted by (X,≤).
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Note that unlike total orders, partial orders do not require completeness; that is, for a

pair x, y ∈ X, they need not be comparable. The simpliest example of partial order is the
” ≤ ” relation on Rk.

Example 11.3. Set inclusion is a partial order. Fix a set S. For A,B ∈ 2S, let A ≤ B if

and only if A ⊂ B.

For any partially ordered set (X,≤) and B ⊂ X, b̄ is the supremum (or join) of B if

x ≤ b̄,∀x ∈ B, and x ≤ b,∀x ∈ B implies b̄ ≤ b. Similarly, b is the infimum (or meet) of B if

b ≤ x,∀x ∈ B, and b ≤ x,∀x ∈ B implies b ≤ b. The supremum and infimum of B may not

exist, but if either one exists, it is unique. When B = {x, y}, we often write supB = x ∨ y
and inf B = x ∧ y. We say that (X,≤) is a complete lattice if for all nonempty subset
B ⊂ X, both the supremum and infimum of B exist in X. Compact sets in R under the
usual order are simple examples of complete lattices.

Example 11.4. Consider x, y ∈ (Rk,≤). Then x ∨ y = (max{x1, y1}, . . . ,max{xk, yk}) and
x ∧ y = (min{x1, y1}, . . . ,min{xk, yk}).

Example 11.5. Consider (2S,⊂). So ≤ is the set inclusion relation ⊂. For two sets A,B ∈
2S, A ∨B = A ∪B and A ∧B = A ∩B.

The following fixed point theorem relies mainly on order relations and the monotonicity

of f, instead of continuity and convexity which are crucial for Brouwer and Kakutani’s

theorems.

Theorem 11.3 (Tarski). Suppose (X,≤) is a complete lattice and f : X → X is a non-

decreasing function (x ≤ y implies f(x) ≤ f(y)). Then the set of fixed points of f is a

nonempty complete lattice.

Proof. Let x̄ = sup{x ∈ X : x ≤ f(x)} and x = inf{x ∈ X : f(x) ≤ x}. Let E(f) be the set

of fixed points of f . We first show that x̄ = supE(f) and x = inf E(f).

Let B = {x ∈ X : x ≤ f(x)}. Since X is a complete lattice and f is nondecreasing,

inf X exists in X and inf X ≤ f(inf X). Hence inf X ∈ B and B is nonempty. For any

x ∈ B, x ≤ x̄ and x ≤ f(x); hence x ≤ f(x) ≤ f(x̄). So f(x̄) is an upper bound of

B, x̄ ≤ f(x̄) and x̄ ∈ B. Moreover, since f(x̄) ≤ f(f(x̄)), f(x̄) ∈ B. Since x̄ is the supremum
of B, together we must have f(x̄) = x̄. Lastly, for any fixed point x′ ∈ E(f), x′ ≤ x′ = f(x′).
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So x′ ∈ B. By definition, x′ ≤ x̄. So being a fixed point and the supremum of B, x̄ must

also be the supremum of E(f). Following similar steps, we can show that x = inf E(f).

It remains to show that (E(f),≤) is a complete lattice. Let E ′ ⊂ E(f) be a subset

of fixed points and let z = supE ′. For any x ∈ E ′, x = f(x) ≤ z; hence x = f(x) ≤ f(z).

Hence f(z) is an upper bound of E ′, and consequently, z ≤ f(z); so we have z ∈ B. The set
{x ∈ X : z ≤ x} is a complete lattice and f maps it into itself. Due to the arguments above,
f must have a minimal fixed point r in this set, which is the least upper bound of E ′. If z

is also a point in E(f), then r = z. Similarly, we can show that the infimum of E ′ exists in

E(f). In sum, E(f) is a complete lattice.

This theorem does not hold anymore if we replace nondecreasing function with nonin-

creasing function. And just as Kakutani generalizes Brouwer’s theorem and Nadler general-

izes Banach’s contraction mapping theorem from functions to correspondences, Zhou (1994)

generalizes Tarski’s theorem from functions to correspondences.

Example 11.6. Due to Tarski’s theorem, any nondecreasing function f : [0, 1]k → [0, 1]k

has a fixed point (note: continuity is relaxed). Moreover, any nondecreasing function f :

[0, 1
3
] ∪ [2

3
, 1]→ [0, 1

3
] ∪ [2

3
, 1] has a fixed point (note: convexity of domain is relaxed).

Example 11.7. Let f : [0, 1]→ [0, 1] be defined as

f(x) =

{
x, if x < 1/2.

1, if x ≥ 1/2.

Then the set of fixed points of f is E(f) = [0, 1/2)∪ {1}. It is a complete lattice itself
(not as as sublattice of [0, 1]), as any nonempty subset of it has supremum and infimum in

it. For example, in E(f), the supremum of the subset [0, 1/2) ⊂ E(f) is 1.

11.4 Application I: Existence of competitive equilibrium

Consider a pure exchange economy. There are L goods and a set N = {1, . . . , n} of
consumers in the economy. Each consumer i ∈ N has a vector of initial endowments

ωi = (ωi1, . . . , ωiL) ∈ RL+ and a utility function ui : RL+ → R. Each utility function is
assumed to be continuous, strictly increasing and strictly quasi-concave.
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In a competitive market, each good l has a nonnegative price pl and the price vector

is denoted by p = (p1, . . . , pL). Consumers are assumed to be price-takers in the sense that

they do not think their consumption can influence prices. The utility maximization problem

of consumer i is

max
xi∈RL+

u(xi), s.t. p · xi ≤ p · ωi.

That is, each consumer chooses the best consumption bundle to maximize her utility,

given that her income is the market value of her endowment. Given that only relative

prices matter for the budget set, it is convenient to normalize the prices and consider only

p ∈ ∆L−1 ≡ {p ∈ RL+ :
L∑
l=1

pl = 1}.

Definition 11.5. A competitive equilibrium is a tuple (x̄1, . . . , x̄n; p̄) such that

1. (Individual rationality) For each consumer i, x̄i solves i’s utility maximization problem;

2. (Market clearing) For each good l,
n∑
i=1

x̄il =
n∑
i=1

ωil.

To find a competitive equilibrium, the main task is to find a price vector p̄ at which

the market of all goods clear at the same time. Due to the monotonicity of the utility

function, we only need to focus on strict positive prices as whenever any good is free (price

is zero), the market for that good will never clear. Then given prices p, we can always solve

each consumer i’s utility maximization problem and obtain her demand function xi(p). We

know that p · xi(p) = p · ωi (Walras’law). Also, due to Berge’s maximum theorem, xi(p) is

continuous in p. (Note: To be mathematically rigorous, we also need to add an exogenous

truncation to the budget correspondence to make it compact valued and continuous even at

prices where some goods are free.)

Theorem 11.4. Any pure exchange economy satsifying the assumptions above has at least
one competitive equilibrium.

Proof. Given any market prices p, let the excess demand for good l be zl(p) =
n∑
i=1

xil(p) −
n∑
i=1

ωil. We then only need to show that there exists p̄ such that zl(p̄) = 0 for all l. Define a

85



price adjustment process F : ∆L−1 → ∆L−1 by

pl →
pl + max{zl(p), 0}

L∑
k=1

(pk + max{zk(p), 0})
=

pl + max{zl(p), 0}

1 +
L∑
k=1

max{zk(p), 0}
.

That is, at any normalized price vector p, the price of good l, pl, will be adjusted by

whether good l has excess demand and the magnitude of such excess. The new prices are

again normalized.

Since xi(p) is continuous, F is a continuous function. Due to Brouwer’s fixed-point

theorem, there exists p̄ ∈ ∆L−1 such that F (p̄) = p̄. That is, for each good l,

p̄l =
p̄l + max{zl(p̄), 0}

1 +
L∑
k=1

max{zk(p̄), 0}
.

Re-organizing it, we have

p̄l
L∑
k=1

max{zk(p̄), 0} = max{zl(p̄), 0}.

Multiply both sides by zl(p̄) and then sum up by l,

∑
l

p̄lzl(p̄)
L∑
k=1

max{zk(p̄), 0} =
∑
l

zl(p̄) max{zl(p̄), 0}.

Due to the Walras’law,
∑
l

p̄lzl(p̄) =
∑
l

p̄l(
n∑
i=1

xil(p̄)−
n∑
i=1

ωil) = 0. Plug into the equation

above, we have
∑
l

zl(p̄) max{zl(p̄), 0} = 0, which holds only if max{zl(p̄), 0} = 0 for all l,

i.e., only if zl(p̄) ≤ 0 for all l. Since
∑
l

p̄lzl(p̄) = 0, we must have zl(p̄) = 0 for all l.

Example 11.8. Suppose there are two goods and two consumers, with u1(x11, x12) =

x
1/4
11 x

3/4
12 and u2(x21, x22) = x

3/4
21 x

1/4
22 . Consumers’endowments are ω1 = (2, 1) and ω2 = (2, 2).

For convenience, let p = (1, p2). Then consumer 1’s utility maximization problem is

maxx
1/4
11 x

3/4
12 , s.t. x11 + p2x12 ≤ 2× 1 + 1p2.
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Solving this problem gives us

x11(p) =
2 + p2

4
, x12(p) =

3(2 + p2)

4p2

.

Likewise, for consumer 2, we have

x21(p) =
3(2 + 2p2)

4
, x22(p) =

2 + 2p2

4p2

.

The market clearing condition of good 1,

x11(p) + x21(p) = ω11 + ω21 = 2 + 2,

which implies p2 = 8
7
.

Due to Walras’law, when the market for good 1 clears, so will that of good 2. The

competitive equilibrium is then

(x̄1, x̄2; p̄) = ((
11

14
,
33

16
), (

45

14
,
15

16
); (1,

8

7
)).

Next, we show the welfare properties of competitive market. Consumers in the market

exchange their endowments to improve their utilities, and the proportion of exchange is

coordinated by prices. The first welfare theorem states that the allocation of competitive

equilibrium is Pareto effi cient, as it exhausts all exchange opportunities among consumers.

An allocation (x1, . . . , xn) is said to be feasible if
n∑
i=1

xi ≤
n∑
i=1

ωi. A feasible allocation is

Pareto effi cient for consumers if it is not Pareto dominated by any other feasible allocation.

Theorem 11.5. Any competitive equilibrium allocation (x̄1, . . . , x̄n) is Pareto effi cient.

Proof. Let the equilibrium price vector be p̄. Suppose instead the equilibrium allocation

(x̄1, . . . , x̄n) is not Pareto effi cient. Then it is Pareto dominated by some feasible allocation

(y1, . . . , yn). That is, ui(yi) ≥ ui(x̄i) for all consumer i and uj(yj) > uj(x̄j) for at least one

consumer j. Since for each i, x̄i is optimal in i’s budget set, we know that p̄ · yi ≥ p̄ · ωi for
all i and p̄ · yj > p̄ · ωj for at least one j. As a result, p̄ ·

n∑
i=1

yi > p̄ ·
n∑
i=1

ωi, which contradicts

with y’s feasibility.
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As we can imagine, market exchange does not ensure fairness. The second welfare

theorem argues that unfairness of the market exchange outcome comes from the unfairness

of endowments, instead of the market mechanism. If any Pareto effi cient allocation is de-

sirable, the planner can always achieve it through market exchange by properly adjusting

endowments or transfering money across consumers.

Theorem 11.6. Suppose (x̄1, . . . , x̄n) is Pareto effi cient. Then there exists price vector p

and transfer vector (t1, . . . , tn) with
∑
i

ti = 0 such that for all i, x̄i solves

max
xi∈RL+

ui(xi), s.t. p · xi ≤ p · ωi + ti.

Proof. Suppose x̄ = (x̄1, . . . , x̄n) is Pareto effi cient. Then
∑
i

x̄i =
∑
i

ωi. Let

U(x̄) = {y = (y1, . . . , yn) : yi �i x̄i,∀i}.

Then the set {
∑
i

yi : y ∈ U(x̄)} is convex and does not contain
∑
i

x̄i. Due to the

hyperplane separation theorem, there exists p ∈ RL+ (strictly positive as u is increasing) such
that for all y ∈ U(x̄),

p ·
∑
i

yi > p ·
∑
i

x̄i. (11.1)

Note that if y1 � x̄1, then (y1, x2 + ε, . . . , xn + ε) ∈ U(x̄). Plug this into Equation 11.1

and let ε→ 0, we have p · y1 ≥ p · x̄1. More generally, p · yi ≥ p · x̄i for all i. That is, at price
vector p, any bundle yi better than x̄i costs at least as much as x̄i. By the continuity of ui,

for small enough ε, yi − ε must also cost at least as much, hence yi must cost strictly more.

Lastly, for each i, let ti = p · x̄i − p · ωi so that with transfer, x̄i becomes affordable at
p. Together, for each consumer i, x̄i is affordable under transfer but any bundle better than

it is not, hence it solves i’s utility maximization problem under transfer.
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11.5 Application II: Existence of Nash equilibrium

In games, the payoff to each player depends not only on his own action, but also on the

actions taken by his opponents. Take two-player games for example, in order to make the

right decision, a player needs to conjecture about the other player’s action, which in turn

depends on the other player’s conjecture about her own action, which further depends on

the other player’s conjecture about her conjecture on the other’s action, and so on. Such

interactive thinking is the major feature of game theory.

Definition 11.6 (Normal-form game). Afinite strategic-form (normal-form) non-cooperative
game is a tuple G = {ui, Ai}i∈N , where

1. N = {1, . . . , n} denotes the finite set of players.

2. Ai is the finite set of actions (strategies) of player i, with a generic element ai.

3. ui : A1 × · · · × An → R is the payoff function of player i.

Let A ≡ ×i∈NAi and A−i = ×j 6=iAj. Each a = (a1, . . . , an) ∈ A is a profile of players’
actions, and each a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i is a profile of i’s opponents’actions.
As a convention, we write a = (ai, a−i). Each action ai ∈ Ai is a pure strategy of player

i. A mixed strategy involves randomization over actions, and is defined as a probability

distribution over pure strategies. Formally, let

∆Ai = {σi ∈ [0, 1]Ai :
∑
ai∈Ai

σi(ai) = 1}

denote the set of probability distributions on Ai. Then each σi ∈ ∆Ai is a mixed

strategy of player i. Given any mixed strategy profile σ = (σi, σ−i) ∈ ×i∈N∆Ai, the payoff

to player i is

ui(σi, σ−i) =
∑
a∈A

σ(a)ui(ai, a−i),

where σ(a) =
∏
j∈N

σj(aj) is the probability that action profile a is played under the

mixed strategy profile σ.

Definition 11.7 (Nash equilibrium). Fix a strategic-form game G = {ui, Ai}i∈N .
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1. A pure action profile a = (a1, . . . , an) is a pure strategy Nash equilibrium of G if

ui(ai, a−i) ≥ ui(a
′
i, a−i), ∀a′i ∈ Ai, i ∈ N.

2. A mixed strategy profile σ = (σ1, . . . σn) is a mixed strategy Nash equilibrium of

G if

ui(σi, σ−i) ≥ ui(σ
′
i, σ−i),∀σ′i ∈ ∆Ai, i ∈ N.

Inuitively, an action profile (or a mixed strategy profile) forms a Nash equilibrium if,

given that all other players play the actions specified by this profile, nobody has the incentive

to deviate from the specified action.

Example 11.9 (Battle of the Sexes). Consider the Battle of the Sexes game played by a
man and a woman, both of whom choose between watching Ballet (B) and Fight (F). The

left table gives the payoffmatrix of the game (with woman choosing the row), and the right

table gives the probability that each action profile in {B,F}2 is played under players’mixed

strategies σ1 = αB + (1− α)F and σ2 = βB + (1− β)F .

B F

B 2, 1 0, 0

F 0, 0 1, 2

βB (1− β)F

αB αβ α(1− β)

(1− α)F (1− α)β (1− α)(1− β)

There are two pure strategy Nash equilibria: (B,B) and (F, F ). There is one mixed

strategy equilibrium: (2
3
B + 1

3
F, 1

3
B + 2

3
F ).

Example 11.10 (Matching pennies). Two players simutaneously announce Head (H) or
Tail (T). Player 1 wins if their announcements match, and player 2 wins if their announce-

ments mismatch.
H T

H 1,−1 −1, 1

T −1, 1 1,−1

This game has no pure strategy equilibrium, but has a mixed strategy equilibrium

(1
2
H + 1

2
T, 1

2
H + 1

2
T ).

Theorem 11.7 (Nash, 1950). Every finite strategic-form game has a mixed-strategy equilib-
rium.
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Proof. For any mixed strategy profile σ = (σ1, . . . , σn), for each i ∈ N, define player i’s best
response correspondence BRi : ×j∈N∆Aj � ∆Ai as

BRi(σ) = arg max
σ′i∈∆Ai

ui(σ
′
i, σ−i).

Since ui is continuous (actually linear) in σ and ∆Ai is convex and compact, by Berge’s

maximum theorem, BRi(σ) is upper hemicontinuous; it is also nonempty, closed and convex

valued. Let BR : ×i∈N∆Ai � ×i∈N∆Ai be defined as BR = (BR1, . . . , BRn). Given each

σ,BR(σ) generates the best response mixed strategy profile. So

BR(σ) = (BR1(σ), . . . , BRn(σ)).

Due to the product structure of BR(·), properties of BRi(·) carry over to BR(·). That
is, BR(·) is also nonempty, closed and convex valued. Therefore, by Kakutani’s fixed point
theorem, BR(·) has a fixed point. That is, there exists σ ∈ ×i∈N∆Ai such that σ ∈ BR(σ).

According to the definition of BR(·), σi ∈ BRi(σ) for all i, hence σ is a mixed strategy Nash

equilibrium.

Example 11.11 (Non-existence of NE in infinite games). Let N = {i, j} and Ai = Aj = N,
where N is the set of natural numbers. The payoff functions are

ui =

{
1 if ai > aj

0 if ai ≤ aj.

Intuitively, the players announce numbers simultaneously, and a player wins a dollar if

and only if she announces a larger number. No pure or mixed NE.

11.6 Application III: Stable matchings as fixed points

A marriage market is a tuple (M,W, (�m)m∈M , (�w)w∈W ), whereM is a finite set of men and

W is a finite set of women; for each man m ∈ M,�m is his strict preference over W ∪ {∅},
and for each woman w ∈ W,�w is her strict preference over M ∪ {∅}, where ∅ stands for
remaining single. If a man m prefers woman w to woman w′, we write w �m w′, and if
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he prefers remaining single to marrying woman w, we write ∅ �m w. Let � be the weak
preference associated with �.

A pre-matching ν maps M ∪W into M ∪W ∪ {∅}, such that ν(m) ∈ W ∪ {∅} and
ν(w) ∈ M ∪ {∅}, and a pre-matching µ is a matching if µ(m) = w ⇔ µ(w) = m. Let V

be the set of pre-matchings. The difference between pre-matching and matching is that a

pre-matching is not necessarily feasible: it pre-matches each man/woman with the one that

he/she proposes to, in spite of the fact that the other party may not wish to accept him/her.

Definition 11.8 (Stability). A matching µ is stable if

1. (individually rational) for all m and w, µ(m) �m ∅ and µ(w) �w ∅;

2. (no blocking pair) there is no (m,w) such that w �m µ(m) and m �w µ(w).

We say that a stable matching µ is man-optimal if it weakly Pareto dominates all other

stable matchings from men’s perspective. Formally, µ is the man-optimal stable matching

if for any stable matching µ′, µ(m) �m µ′(m) for all m ∈ M . The famous man-proposing
Gale-Shapley Deferred Acceptance Algorithm (DA) proves the existence of the man-
optimal stable matching by directly producing it through a propose-reject process. The

algorithm operates as follows:

Step 1 Each man proposes to his most favorite woman, and each woman (if facing proposals)

tentatively accepts the best proposer according to her preference and rejects all other

proposers.

Step k, k ≥ 2 Each man, if rejected in the previous step, proposes to his next favorite

woman, and each woman (if facing proposals) tentatively accepts the best proposer

according to her preference, among both new proposers and the previously accepted

man, and reject all others.

The algorithm stops at the step when no man is rejected.

This matching produced by this algorithm is the best stable matching for men but the

worst stable matching from women’s perspective. Moreover, this algorithm is strategyproof,

in the sense that no man has incentive to misreport his preference (but women may misre-

port). (Note: stability is straightforward, but proofs of the other results are nontrivial. If
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interested, please refer to Roth and Sotomayor, Two-sided Matching, 1990.) Among many

of the applications of DA, the most influential one is school choice, where students propose

to schools, and the algorithm produces the student-optimal stable matching.

Similarly, the woman-proposing DA algorithm produces the woman-optimal stable

matching. In general, a marriage market has many stable matchings, other than the two

extremal ones produced by the algorithm. To study the structure of the whole set of stable

matchings, we use tools related to Tarski’s fixed point theorem.

Define T : V → V such that for all pre-matching ν ∈ V,m ∈M and w ∈ W,

T (ν)(m) = sup
�m
{w ∈ W : m �w ν(w)} ∪ {m},

T (ν)(w) = sup
�w
{m ∈M : w �m ν(m)} ∪ {w},

where the supremum is taken according to the respective agent’s preference. Since we

assume strict preferences, T (ν) is always single valued and is thus a pre-matching; hence T

is a function from V to V .

Given any pre-matching v, T (ν)(m) matches each man m ∈ M with his most favorite

woman among women who prefer him to their respective pre-match under ν, and T (ν)(w)

matches each woman w ∈ W with her most favorite man among men who prefer her to their

respective pre-match under ν. So each time we apply T on a pre-matching ν, in a sense, the

new pre-matching Tν becomes more feasible.

Lemma 11.8. A pre-matching ν is a stable matching if and only if it is a fixed point of T .

The proof of this lemma is left to you as an exercise. We now define a partial order

for the set of pre-matchings. Let ν ≤ ν ′ if ν ′(m) � ν(m) and ν(w) � ν ′(w), for all m,w.

(Note the reversal in the definition.) So ν ∨ ν ′ (ν ∧ ν ′, respectively) is the pre-matching that
matches each man m with the better (worse) one in {ν(m), ν ′(m)} and matches each woman
w with the worse (better) one in {ν(w), ν ′(w)}. Then (V,≤) is a complete lattice. Moreover,

if ν ≤ ν ′, then Tν ≤ Tν ′; hence T is nondecreasing.

As a direct result of Tarski’s fixed point theorem, we obtain the lattice structure of the

set of stable matchings.

Theorem 11.9. The set of fixed points of T, that is, the set of stable matchings for the
marriage market, is a nonempty complete lattice.
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The lattice structure of the set of stable matchings implies that the join and meet of

two stable matchings are also stable, and there exists an optimal stable matching for men

(the supremum of the lattice) and an optimal stable matching for women (the infimum of

the lattice). The man-optimal matching can be obtained by iteratively applying T , starting

with the pre-matching ν such that ν(m) = sup�m{W ∪ {∅}} and ν(w) = {w}. You should
be able to see that this process is exactly the DA algorithm. The woman-optimal matching

can be obtained in the reverse way.
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