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Abstract

Real data often have complicated correlation over cross section and time. Mod-
eling, estimating and interpreting the correlations in data are particularly important
in economic analysis. This paper integrates several correlation-modeling techniques
and propose dynamic spatial panel data models with common shocks to accom-
modate possibly complicated correlation structure over cross section and time. A
large number of incidental parameters exist within the model. The quasi maximum
likelihood method (ML) is proposed to estimate the model. Heteroskedasticity is
explicitly estimated. The asymptotic properties of the quasi maximum likelihood
estimator (MLE) are investigated. Our analysis indicates that the MLE has a non-
negligible bias. We propose a bias correction method for the MLE. The simulations
further reveal the excellent finite sample properties of the quasi-MLE after bias cor-
rection.
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1 Introduction

Real data often have complicated correlation over cross section and time. These cor-
relations contain important information on the relationship among economic variables.
Modeling, estimating and interpreting the correlations in data are particularly important
in economic analysis. In econometric literature, the correlations over time are typically
dealt with by the autoregressive models (e.g., Brockwell and Davis (1991), Fuller (1996),
etc), among other models. The correlations over cross section are typically captured
by spatial models or factor models (e.g., Anselin (1988), Bai and Li (2012), Fan et al.
(2011), etc), among other models. In this paper, we integrate these correlation-modeling
techniques and propose dynamic spatial panel data models with common shocks to ac-
commodate possibly complicated correlation structure over cross section and time.

Spatial models are one of primary tools to study cross-sectional interactions among
units. In these models, cross sectional dependence is captured by spatial weights matri-
ces based either on physical distance, and relative position in a social network or on other
types of economic distance®. Early development of spatial models has been summarized
by a number of books, including Cliff and Ord (1973), Anselin (1988), and Cressie (1993).
Generalized method of moments (GMM) estimation of spatial models are studied by
Kelijian and Prucha (1998, 1999, 2010), and Kapoor et al. (2007), among others. The max-
imum likelihood method (ML) is considered by Ord (1975), Anselin (1988), Lee (2004a),
Yu et al. (2008) and Lee and Yu (2010), and so on.

Cross-sectional dependence may also arises from the response of individuals to com-
mon shocks. This motivates common shocks models, which are widely used in applied
studies, see, e.g., Ross (1976), Chamberlain and Rothschild (1983), Stock and Watson
(1998), to name a few. For panel data models with multiple common shocks, Ahn et
al. (2013) consider the fixed-T GMM estimation. Pesaran (2006) proposes the corre-
lated random effects method by including additional regressors obtained from cross-
sectionally averaging on dependent and the explanatory variables. The principal com-
ponents method is studied by Bai (2009) and reinvestigated with perturbation theory by
Moon and Weidner (2009). Bai and Li (2014b) consider the maximum likelihood method
in the presence of heteroskedasticity.

A popular approach to dealing with temporal dependence is dynamic panel data
models. In these models, the presence of individual time-invariant intercepts (fixed-
effect) causes the so-called “incidental parameters problem” (Neyman and Scott (1948)),
which is the primary concern in the related studies. A consequence of the incidental
parameters problem is the inconsistency of the within group estimator under fixed-T
(Nickell (1981)). Anderson and Hsiao (1981) suggests taking time difference to eliminate
the fixed effects and use two-periods lagged dependent variable as instrument to esti-
mate the model. Arellano and Bond (1991) extend the Anderson and Hsiao’s idea with
the GMM method. Under large-N and large-T setup, Hahn and Kuersteiner (2002) shows
that the within-group estimator is still consistent but has a O(+) bias. After bias correc-

QFor spatial interaction and economic distance, see, e.g., Case (1991), Case et al. (1993), Conley (1999),
Conley and Dupor (2003), and Topa (2001).



tion, the corrected estimator achieves the efficiency bound under normality assumption
of errors. Alvarez and Arellano (2003) investigate the asymptotic properties of the within
group, GMM and limited information ML estimators under large-N and large-T.

In this paper, we consider jointly modeling spatial interactions, dynamic interactions
and common shocks within the following model:

N
Vie = 0 +p Y Wi NYjt + OYie—1 + X B + Aif + eir. (1.1)
=1

where y;; is the dependent variable; x;; = (X1, Xir, - - ., Xisx)’ is a k-dimensional vector of
explanatory variables; f; is an r-dimensional vector of unobservable common shocks; A;
is the corresponding heterogenous response to the common shocks; Wy = (wjj,n)NxN
is a specified spatial weights matrix whose diagonal elements w;; 5 are 0; and e;; are
the idiosyncratic errors. In model (1.1), term A!f; captures the common-shocks effects,
Iy Zjlil wijNYjt captures the spatial effects, and Jy;; 1 captures the dynamic effects. The
joint modeling allows one to test which type of effects is present within data. We may test
p = 0 while allowing common-shocks effects and dynamic effects; or similarly, we may
determine if the number of factors is zero in a model with spatial effects and dynamic
effects. It may be possible that all the three effects are present. The features of model
(1.1) make it flexible enough to cover a wide range of applications. The applicability of
the model is discussed in Section 2.

An additional feature of the model is the allowance of cross sectional heteroskedas-
ticity. The importance of permitting heteroskedasticity is noted by Kelejian and Prucha
(2010) and Lin and Lee (2010). The heteroskedastic variances can be empirically impor-
tant, e.g., Glaeser et al. (1996) and Anselin (1988). In addition, if heteroskedasticity exists
but homoskedasticity is imposed, then MLE can be inconsistent. Under large-N, the con-
sistency analysis for MLE under heteroskedasticity is challenging even for spatial panel
models without common shocks, owing to the simultaneous estimation of a large num-
ber of variance parameters along with (p,d, ). The existing quasi maximum likelihood
studies, such as Yu et al. (2008) and Lee and Yu (2010), typically assume homoskedastic-
ity. These authors show that the limiting variance of MLE has a sandwich formula unless
normality is assumed. Interestingly, we show that the limiting variance of the MLE is
not of a sandwich form if heteroskedasticity is allowed.

Spatial correlations and common shocks are also considered by Pesaran and Tosetti
(2011). Except that the dynamics is allowed in our model but not in theirs, another key
difference is that they specify the spatial autocorrelation on the unobservable errors e;;
while we specify the spatial autocorrelation on the observable dependent variable v;;.
Both specifications are of practical relevance. Spatial specification on observable data
makes explicit the empirical implication of the coefficient p. From a theoretical per-
spective, the spatial interaction on the dependent variable gives rise to the endogeneity
problem, while the spatial interaction on the errors, in general, does not. As a result,
under the Pesaran and Tosetti setup, existing estimation methods on the common shocks
models such as Pesaran (2006) and Bai (2009) can be applied to estimate the model.
As a comparison, these methods cannot be directly applied to model (1.1) due to the



endogeneity from the spatial interactions.

In this study, we consider the pseudo-Gaussian maximum likelihood method (MLE),
which simultaneously estimates all parameters of the model, including heteroskedas-
ticity. We give a rigorous analysis of the MLE including the consistency, the rate of
convergence and limiting distributions. Since the proposed model has several sources of
incidental parameters (individual-dependent intercepts, interactive effects, heteroskedas-
ticity), the incidental parameters problem exists and the MLE is shown to have a non-
negligible bias. Following Hahn and Kuersteiner (2002), we conduct bias correction on
the MLE to make it center around zero. The simulations show that the bias-corrected
MLE has good finite sample performance.

The rest of the paper is organized as follows. Section 2 gives some potential show-
case examples of the model. Section 3 lists the assumptions needed for the asymptotic
analysis. Section 4 presents the objective function and the associated first order condi-
tions. The asymptotic properties including the consistency, the convergence rates and
the limiting distributions are derived in Section 5. Section 6 discusses the ML estimation
on spatial models with heteroskedasticity. Section 7 reports simulation results. Section 8
discusses extensions of the model. The last section concludes. Technical proofs are given
in a supplementary document. In subsequent exposition, the matrix norms are defined
in the following way. For any m x n matrix A, |A|| denotes the Frobenius norm of A,
ie., ||Al = [tr(A’A)]"2. In addition, || A||« is defined as || A[|c = max;<i<, Y1 |aj| and
|All1 is defined as [|Al|; = maxi<j<, Yi" |a;j|, where a;; is the (i, j)th element of A. We
use 4; to denote 4; = a; — % Zthl a; for any column vector a;. Throughout the paper, we
assume the data of Y at time 0 are observed.

2 Some application examples

The proposed model can be applied in a variety of economic and social setups. In this
section, we list two typical examples.

Finance. Recent studies pay much attention on financial network and financial con-
tagion. Let y;; be the stock price (or profit) of firm i at period t. In financial market,
one firm may hold shares of other firms and other firms may hold shares of this firm.
This generates a financial network (Elliott et al. (2014)). Let Wy = [wi]»,N] be some metric,
which measures the cross-holding pattern among firms in market. Then p Zj]\il Wij NYjt
captures the cross-holding effects on firm i. In addition, as implied in asset pricing the-
ory (see, e.g., Ross (1976), Conner and Korajczyk (1986, 1988), Geweke and Zhou (1996)),
there are systematic shocks and risks affecting all the stocks, which we denote by f;. The
individual-dependent responses to these shocks are captured by A;. This leads to term
Alfi. Furthermore, the adaptive expectation of firms gives rise to dy;;_1. Let x; be a vec-
tor of explanatory variables, which are thought useful to explain the behaviors of stock
prices. We allow that x;; has arbitrary correlations with systematic shocks f;. Putting
these ingredients together, we have the model specification like (1.1).

Macroeconomics. Standard economic theory asserts if other countries grow with high
rates, the outside demand would drive up the growth rate of home country through



trade. Recent studies shows that international trade exhibits some spatial pattern, not
only due to the distance cost as illustrated by “gravity” theory, but also duo to regional
trade agreement as well as ethnical, cultural and social network among the firms, see,
e.g., Baltagi et al. (2008), Lawless (2009), Rauch and Trindade (2002), Defever et al. (2015),
etc. Let y; be growth rate of country i at period t, and Wy = [wij,N] be some met-
ric, which measures the closeness of countries based on the bilateral trade. Then term
Iy Z]-Iil wij NYjt captures the companion-driving effect in growth. Similarly as in the previ-
ous example, the growth rates of countries over the world are subject to global economic
shocks, such as technological advances and financial crisis (Kose, Otrok and Whiteman
2003). We therefore introduce term A’f; to adapt to this fact. Term dy;;_ is also necessary
because of the inertia of growth. With these considerations, we have the specification of
model (1.1).

Besides the above economic applications, the proposed model also has its applications
in social science. In a pioneer study, Manski (1993) distinguishes three effects within so-
cial interactions, endogenous effects, contextual effects and correlated effects. In empirical
studies, endogenous effects are estimated by the spatial term, controlling correlated ef-
fects through the usually additive fixed effects (Lin (2010)). In the proposed model, we
can deal with correlated effects in a more general and plausible way by factor models.
In addition, we allow the dynamics. In Appendix, we show that, with some slight mod-
ifications, our model specification can be motivated by the quadratic utility model of
Calvé-Armengol et al. (2009).

Apart from the above specific applications, model (1.1) can also be used, as the first
step, to determine which model should be used in analysis. For example, it is known
that knowledge spills over after it is generated. The spill-over pattern may exhibit some
ad hoc weak one, as specified by spatial models, or a general strong one, as specified by
common shock models. There are some debates on this issue (Eberhardt et al. (2013)).
Our model is helpful to solve this issue.

3 Assumptions

We first introduce a set of normalization conditions, which facilitate the analysis of the
asymptotic properties. Let &« = (a1, ay,...,an) and Yi = (y1t, yor, - - ., ynt)'. The symbols
Y;—1, X; and e; are defined similarly as Y;. Then we can rewrite model (1.1) into matrix
form

Yy =a+pWNY: +6Yi1 + XeB+ Afi +e. (3.1)

The above model can always be written as

Yi = (& + AF) +pWNYi 4+ 8Yi1 + XiB+ AQ 2 QV2(f; — ) +er
+ A‘r f+
14 t

where Q = 1 A'S,!A and f = %Zle fi. Let af, AT and f; be defined as illustrated in
the above equation. We see that ¥/, f{ = 0 and FAVELAY = I, So it is no loss of
generality to assume



Normalization conditions: Zthl fi =0; %A’ Z;}A = I.
We shall use (p*, 8%, B*) to denote the true values for (p, J, B), and we use (A*, ) to
denote the true values for (A, f;). So the data generating process is

Yt = DC* + p*WNYt + 5*Yt_1 + Xt‘B* —+ A*ft* + ét.

Let C be a generic constant large enough. We make following assumptions for the asymp-
totic analysis.

Assumption A: The x;; is either a fixed constant or a random variable. If x;; is fixed,
we assume ||x;|| < C; if x;; is random, we assume E(||x;||*) < C for all i and t. If x;; is
random, it is independent with the idiosyncratic error ejs for all 7, j,t and s.

Assumption B: The A} and f; can be either fixed constants and random variables.
If A} is fixed, we assume that [|A}|| < C for all i and FAYZ A" — QF where A* =
(A}, A3,...,AY), otherwise we assume that E([|Af[|*) < C for all i and {AYE}, TA* LN
0, where ¥}, is defined in Assumption C and (), is some matrix positive definite. If f;*
is fixed, we assume that | f;|| < C for all t and +F*'F* — QF, otherwise we assume that

E|ff|* <Cforall t and +F*'F* LN OF, where )} is some matrix positive definite.

Assumption C: The ¢;; is independent and identically distributed over ¢t and indepen-
dent over i with E(e;;) = 0, C™! < 072 < C and E(e}) < C for all i, where 07> = E(¢?).
Let X}, = diag(c}2, 052, ...,03%) be the variance of e; = (e, ez, ..., ent)’. In addition, if
{Ar} and {f;'} are random, we assume that {e;} are independent with {A*} and {f; }.

Assumption D: The underlying value w* = (p*,*, 6*)" is an interior point of pa-
rameters space O, = (—1,1) x S5 X Sp, where S5 and 54 are the two compact subsets of
R and RF.

Remark 3.1 Assumption A impose restrictions on the explanatory variables x;. Al-
though it requires that x;; be independent with ejs, it does allow x;; to have arbitrary
correlations with A; or f; or Alf;. This extends the traditional panel data analysis. As-
sumption B is about factors and factor loadings. This assumption is standard in pure
factor analysis, see Bai (2003) and Bai and Li (2012). Assumption C assumes that the
idiosyncratic error e;; is independent over the cross section and the time. In the present
scenario, such an assumption is not restrictive as it looks to be since the weak correla-
tions over the cross section and the time in data have been dealt with by the spatial term
and the lag dependent term. However, if the cross sectional correlation of e;; is a major
concern in empirical studies, our analysis can be extended to accommodate it, see the
related discussion on SAR disturbances in Section 7. Assumptions D impose restrictions
on the underlying coefficients. This assumption is standard.

Assumption E: The weights matrix Wy satisfies that Iy — p*Wy is invertible and

limsup [|[Wy|le < C; limsup |[Wn|1 < C; (3.2)
N—co N—eo

limsup ||(Iy — p*Wn) o < C; limsup ||(Iy — p*Wyn) |1 < C. (3.3)
N—o0 N—o0

In addition, all the diagonal elements of Wy are zeros.



Assumption F: Let G}, = (Iy — p*Wy) 1. We assume

hmsupz (6 G|, < C limsup ) H(‘S*GI*\I)ZH1 <C.
N—oo =0 N—oo =0

Remark 3.2 Assumptions E and F are imposed on the spatial weights matrix. Assump-
tion E is standard in spatial econometrics, see Kelejian and Prucha (1998), Lee (2004a),
Yu et al. (2008), Lee and Yu (2010), to name a few. Under this assumption, some key
matrices, which play important roles in asymptotic analysis such as G}; in Assumption
F and S}; in Assumption G, can be handled in a tractable way. Assumption F implic-
itly guarantees that y;; has a well-defined MA(c0) expression. Similar assumption also
appears in Yu et al. (2008). A set of sufficient conditions for Assumptions E and F are
limsup ||[Wy|lo < 1, limsup |[Wylj1 < 1and |p*| + |6*| < 1 because

N—oc0 N—o0

1
hmsupHGNHoo—hmsupH(I—p WN) ™ |eo §hmsupz 0" Wi leo)! < 1 = < 0,
N—o0 N— N—oo  j= _|P‘
and the argument for limsup ||G}/||1 < 1_1‘p*| < o0 is the same. Similarly
N—o00
0o * l *
1 0G| <1 (16*] -1IG o* ] __ 1-1p
imsup 1 (6°GR)' |, < limsup 05716k < & |70 | = 1
N-soo 120 ; = L1 [p"] 6% = |o*]
and the argument for hrz?jolip 2 o(18%] - 11GE 1) < % < oo is the same.

To state Assumption G, we first introduce some notations for ease of exposition.
Let Y = (ijit)nxT be the data matrix for 7; with j; = Zjlil wijNYje and Y = yjr —
Ty Yo = (Yit—1)Nxr With gie 1 = Yie1 — T'Yl yiso1 and X4, Xo, ..., X be
defined similarly as Y_;. Furthermore, let (k+ 1) x (k4 1) matrix D, be defined as

tI'(Y‘/_lMYflMF*) tr(Y’_lMlep*) cee tr(Y’_lMXkMp*)
1 tI‘(X{MY'_lMP*) tI‘(XiMXlMP*) s tI‘(XiMXkMF*)
Dy = — . :
NT : : .
tr(X,’(MY_lMF*) tr(X,’(MXlMP*) ce tr(X,’(MXkMp*)

Assumption G: Let S5, = Wy (Iy — p*Wyx) ™! and SN be the (i,j)th element of Sy;.
Let & be parameters space for A and X,., which satisfies the normalization conditions,
ie.,

1
= {(A,Zee) ’ cl< (71-2 <(C,Vi; and NA’Z;E]A = Ir},

We assume one of the following conditions:
(i) 6* #0or B* #0. Let Y = Sy (6°Y_1 + Ty B3 X,) and

1 1 ~ 1 ~
(= {T’[I‘(Y MY_ 1MP*) mtl‘(Y’Mlep*), cee, N,TtI‘(Y,MXkMp*):| ,

< 0o,



(VT M
where { is a (k+ 1)-dimensional row vector. The matrix D, = [NT’CT(Y é\//IYMp ) ][g ] is
b
positive definite on §, where My« = It — F*(FYF*)"'F*and M = £ ! - NT1Z'AN'T, L.
(ii) For all p € S, and all N,

N

N ) 5
]_12]:#1 ( if, NO'* + S]z N(T ; ip, N ]P N(T ) > O, (3.4)

Mz

lim inf
N—oo

Il
—_

l

and Dy is positive definite on &, where M and M- are defined the same as in (i).

Remark 3.3 Assumption G imposes the conditions for the identification of p and 4, B.
The identification for the coefficient of spatial term is a non-trivial problem in spatial
econometrics. This problem is investigated in a thorough way in Lee (2004a). Assump-
tion G(i) can be viewed as a version of Assumption 8 of Lee (2004a) in the common
shocks setting. Since the identification of p in Assumption G(i) depends on the underly-
ing value of § and B, it is a local identification condition. In contrast, Assumption G(ii)
is a global identification condition. Condition (3.4) corresponds to Assumption 9 in Lee
(2004a) and the condition in Theorem 2 of Yu et al. (2008), but it is different from theirs
because we allow heteroskedasticity. To see this, we show in Appendix A that condition
(3.4) is related to the unique solution of Tin(p, (712, e, (712\[) = 0 with

1 N 1 . B 1
Tin(o,0%,...,0%) = —ﬁtr[RZ R'LL + N IRELR'E A+ >
where R = (Iy — pWn)(In — p*Wy) L. When homoskedasticity is assumed, 71y reduces
to T1 , in Yu et al. (2008). After concentrating out the common variance a2, T1,, leads to
Assumption 9 in Lee (2004a) and the assumption of Theorem 2 in Yu et al. (2008). Because
of heteroskedasticity our identification condition takes a different form.

Assumption H: The parameters w and (71-2 fori=1,2,...,N are estimated in compact
sets.

Remark 3.4 Assumption H assumes that partial parameters are estimated in compact
sets. This assumption guarantees that the maximizer of the objective function is well
defined. In pure factor analysis, it is known that the global maximizer of the quasi
likelihood function with allowance of cross sectional heteroskedasticity do not exist, but
the local maximizers are well defined and are consistent estimators for the underlying
parameters under large N and large T, see, e.g., Andreson (2003). The objective function
in the present paper is an extended version of the one in pure factor models and inherits
the same problem. We therefore impose Assumption H to confine our analysis on local
maximizers.

4 Objective function and first order conditions

Let Zi(a,w, A\, F) = Y —a— pWNY: — 6Yi1 — X¢ B — Afy with w = (p,d, f’)’. Conditional
on Yp which we assume are observed, the quasi likelihood function, by assuming the



normality of e;, is

1

T

1 1
Y Zi(w,w, A F)E, Zi(w,w, A F) — s In|Zee| + — In |Iy — pWi|.
= 2N N
where 6 = (w, A, diag(Zee)) .2 Given X, w and A, it is seen that & and f+ maximize the
above function at

a=Y—pWY —-6Y 1 —XB—Af
and
ft = (A/Ze_elA)_lA,Ze_el(Y’t — pWYt — 5Yt—l — Xt‘B)
Substituting the above two equation into the preceding likelihood function to concentrate
out & and f;, the objective function can therefore be simplified as
1 T

~2NT
1

1

where M = 2,1 — ZIA(AZLIA) TIAE! = 5.1 — L5 TANE,! and V; = Wy Y. The
maximizer, defined by

E(Q) = (Yt — th — (SYt_] — thB)/M(Yt — th — (SYt_] — Xt‘B)

t=1

0 = argmax L(6),
€O

is referred to as the quasi maximum likelihood estimator or MLE, where © is the param-
eters space specified by Assumptions G and H. More specifically, © is defined as

1
@:{m:@ijme“ggc1§ﬁchaNA2;A:L}

The first order condition for A gives

1 & e e oA e e e =
NT Y (Vi = pYe = 6Yiq — XiB) (Yi — pYi — 6Yi1 — X))
=1

S IA =AV. (4.1)

where V is a diagonal matrix. The first order condition for U'iz gives

n n A2
). [y‘it — Ot — 0Yit—1 — X — A?ft]

=

==

X T
07 =
1

.. N .
where jj;; = Zj:1 wi; NYjt and

. A A et e A T sre e er an A
ﬁ:mz;m1N;ﬂm—mgwn4—&@:NN;ﬂm—mywnq—&m
The first order condition for p is
1 L SPCIPN s A A 1 R 1
ﬁfZymﬂm—pm—5m4—me—ﬁumewwmw)]:0
t=1

®Strictly speaking, 0 should be written as @y since it also depends on N. But we drop this dependence
from the symbol for notational simplicity. The symbols ® and 3 below are treated in a similar way.



The first order condition for ¢ is

1 T . ~ . .. A A
NT Y Y] M(Y; —pY —0Yq — Xip) =0.
t=1

The first order condition for B is

1 T . o - A
NT Y XIM(Y; — pYi — Y, — Xif) = 0.
t=1

We emphasize that in computing the MLE, we do not need to solve the above first order
conditions. They are just for theoretical analysis.

5 Asymptotic properties of the MLE

In this section, we first show that the MLE is consistent, we then derive the convergence
rates, the asymptotic representation and the limiting distributions.

Proposition 5.1 Under Assumptions A-H, when N, T — 00®  we have

d)iw*;
1Y 2 2\2 P
= 2 (07 =07 =0
N =
1 -~
AYMA* B 0

where w* = (p*, 5%, B) and M = £,' — N-1STAAS L.

In the analysis of panel data models with common shocks but without spatial ef-
fects, a difficult problem is to establish consistency. The parameters of interest (4, 8) are
simultaneously estimated with high dimensional nuisance parameters A and X.. The
usual arguments need some modifications to accommodate this feature. The presence of
spatial effects further compounds the difficult. Our proof of Proposition 5.1 consists of
three steps. First we show there exists a function £4(6) such that

sup |£(6) — £1(6)] L5 0.
0e®

Then we show that the function £1(0) possesses the property that there exists an € > 0,
which depends on the N¢(w*), such that

sup sup L1(0) — L£1(0") < —e,
(AZee) €S weN(w*)

®In this paper, when we say the limit we mean the joint limit, which is the limit by letting N and T pass
to infinity simultaneously, without naming the order that which index diverges first and which one diverges
next. The latter case is called the sequential limit in the literature. Readers are referred to Phillips and Moon
(1999) for a formal and precise definition of the two types of limit. See also the definition O, and o; in
Appendix A.



where N¢(w*) is the complement of an open neighborhood of w*. Given the above two
results, we have & 2> w*. After obtaining the consistency of @, in the third step we show
the remaining two results in Proposition 5.1.

Notice that w is low-dimensional but ., and A are high dimensional. So the usual
consistency concept applies for w. But for ¥, and A, their consistencies can only be
defined under some chosen norm. The second result is equivalent to % ||Zec — 22| 0.
So the chosen norm is dimension-adjusted frobenious norm. The norm used in the last
result can be viewed as an extension of generalized square coefficient between two high-
dimensional vectors. We choose this norm to take account of rotational indeterminacy
on factor and factor loadings, see Bai and Li (2012) for discussions on rotational indeter-
minacy in factor analysis.

The consistency result allows us to further derive the rates of convergence.

Theorem 5.1 Let H = =V Y A'LIA*)(F'F*). Under Assumptions A-H, when N, T —
00, we have

1 1

~ N2
N o2 242 1 1
N.Z;(Ui —07) :Op(ﬁ) Op(T);

1

N ~
Y 1A = HAF (12 = Oy
i=1

)+ O0p(T7H);

Z|

@ —w* =0,(N"1)+0,(T™).
where V is defined in (4.1).

It is well documented in econometric literature that the MLE for dynamic panel data
models has a O(%) bias term, see, for example, Hahn and Kuersteiner (2002) and Alvarez
and Arellano (2003). The case with inclusion of spatial term and lag spatial term has
been investigated by Yu et al. (2008), which shows that the bias term is still O(1) but the
expression is related with spatial weights matrix. This bias term is inherited by our MLE,
as we can see that model (1.1) is an extension of classical spatial dynamic models. Apart
from this O(+) bias term, our analysis indicates that there is another O(+;) bias arising
from common shocks part Af;. The presence of biases in the MLE is due to incidental
parameters problem, see Neyman and Scott (1948) for a general discussion.

To state the asymptotic properties of the MLE, we define the following notations:

3 *GF * ) * - * ok * A K [k : 1 &
B =Y (6"GR)'GN X + Y (6"GR)'GNA*fi,  Bi=B— LB,
=0 1=0 s=1
Bi=WnB, Q=) (0°GN)'GRerr,  Ji = SN 1 (6°GR) err.
1=0 =1

Now we state the main theorem in this paper, which gives the asymptotic representation
of & — w.

Theorem 5.2 Under Assumptions A-H, when N, T — co and VN/T = 0,/T/N — 0, we
have

VNT(& — w* +b) =D& +0,(1),
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where

1 Zgzl B;M*et - EfT:szstlTB;M*eSF:t + X ﬂTZ:e_let +1
JNT Zthl B.é—lM*et - Tthl TE::; B;_—lM*eSn:t + i QX e
Y1 XiM er — Y1 Yogq XiM et

st

¢ =

with gy = fX(FYF*)7Lf and M* = S50 — $E8IANAYESL The (k+2) x (k+2)
matrix D is defined as

_tr(Y/M*YMp*)—HD tr(Y’M*Y_lMp*) tI‘(Y’M*XlMF*) ce tl'(Y/M*XkMF*) i
tr(Y’_lM*YMF*) tI‘(Y’_lM*YflMp*) tI‘(Y/_lM*XlMF*) ce tr(Yl_lM*XkMp*)
D= L | w(XNMYMp)  te(XMY_ Mp) (XM X Mp) - te(X M XM
NT . . . . .
tI‘(X;cM*YMF*) tr(X,'(M*Y,lMF*) tI‘(X;(M*XlMF*) tee tI‘(X;(M*XkMF*) i

with ® = T[tr(SZ) —2TN, SiA]- The (k + 2)-dimensional vector b is defined as
N[AY S TAT (AYE A Y + gptr[PEK]
b=D"" wptr[PEL]
Okx1

with Pz = F(F'F)"'F' and F = (F*,1r). Here 1 is a T-dimensional vector with all its elements
being 1. In addition,

0 0 0 - 0
tr[S} (6°GYy)] 0 0 o 0
K= | alSy(eGR)?  ulSy(0°Gy)] 0 ol
e[S (8*Gr) T tr[S(8°GR) T2 tr[S{(8*GR) T3] - O]
and
0 0 0 0
tr(Gyy) 0 0 0
Lo | wlGy(6°Gy)) tr(Gy,) 0 0,
tr[Gy(6*GR) 2] tr[GR(6*GR)T ] (G (6*GR)T] - 0
and

N N T
N = ZetS*O/Z*gl Z Z Z

i=1j=1 t:l

?é ] elte]tsz] N-

Here Sy is an N x N matrix which is obtained by setting all the diagonal elements of S%; to
Zeros.

Although ¢ has a relatively complicated expression, it can be shown that D~1/2¢ 4
N(0, Iy, ) by resorting to the martingale difference central limit theorem (see Corollary
3.1 in Hall and Heyde (1980)). Appendix E gives a detailed derivation. Given this result,
we have the following corollary.
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Corollary 5.1 Under the assumptions in Theorem 5.2, when N, T — oo and N/T — x2, we
have

-1
VNT(@ — w*) % N( — b, [ plim D} )
N, T—o00
where
Ler[AYSYEi TS (AL IAY) Y + tr[ 4 PK]
b°® = plim ¢ D! xtr[ 4 P:L]
N, T— o0 Ok><1

Theorem 5.2 include some important models as special cases. If there are no lag
dependent term and spatial term in model (1.1), i.e.,

Yie = a; + X3+ Aifi e,

the present analysis indicates that under vN/T — 0,v/T/N — 0 as well as other regu-
larity conditions, the asymptotic representation of 3 — f is

~ 1 r . . rr .
VNT(B—B*) =D — (2 XiM*er— Y ) X{M*esn*t> +0,(1),
P VNT \H e i
where e .
tI‘(XiM*XlMF*) s tI‘(XiM*XkMF*)
Dp = <= : :
tr(X]/{M*XlMF*) s tr(X,/{M*XkMF*)

It is seen that the MLE is asymptotically free of bias. This extends the analysis of Bai
(2009), which shows that the profile MLE has no bias in asymptotics if the error e;
is independent and identically distributed over the time and cross section dimensions.
When lag dependent variable is included but the spatial term is absent, the MLE would
have an identical limiting variance representation as the above, if we treat lag dependent
variable as an additional exogenous regressor. But the MLE is no longer unbiased. The
bias term is %tr(PfU)]D;ltkH if we label the lag dependent variable as the first regressor,
where ]qul is the limiting variance of ¢ = (3, )’; L' is defined as

0 0 o --- 0
1 0 o --- 0
_5T'—2 (5T—‘3 5T—.4 . 6_

and (41 is the first column of the k 4+ 1 dimensional identity matrix. Moon and Weid-
ner (2013) consider a similar model by assuming cross sectional homoskedasticity. Our
results are derived under cross sectional heteroskedasticity.

Remark 5.1 A specification of practical relevance, which is widely used in social inter-
action studies, is

Y =a+ pWNYt +0Y;_1+ Xtﬁ + Wy Xy + Aft + e;.
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As pointed out by an array of studies (Lee (2007), Bramoullé et al. (2009), Lin (2010), ect.),
p captures the endogenous effect and -y the contextual effect in terms of Manski (1993).
Let X; = (X;, Wy X;) and B = (B/,7'), we see that the above model is equivalent to

Yt =ua+ pWNYt + §Yt_1 + )?tg—i— Aft + ¢;.
If X; satisfies Assumption G, Theorem 5.2 applies.

Remark 5.2 Under Assumptions E and F, Y; has a well-defined MA(co) expression:

Y =) (6°GR)'GRa™ + ) (8" GR)' GAXeiB™ + ) (8" GR) GRA™ i + ) (6°GR)' Grver -
1=0 1=0 1=0 1=0

Given the above results, we have

Y;

aXLs/p

i

— (FGRICiBy 5, = (6°G)Ci
t—s

where X; 5, denote the pth column of X; s (p = 1,2,...,k). The above result implies

dyit dyit
— 5*G* SG* * ,_ — 5*G* SG* .
axj(tfs)p [( N) Npr]l] aej(tfs) [( N) N]z]
where we use [M];; to denote the (i, j)th element of M. So the marginal effects of x;;_,),
and e;;_,) on yj can be estimated according to the above formulas by plug-in method.
The limiting distributions of the marginal effects can be easily calculated by the delta
method via Theorem 5.2.

Remark 5.3 The limiting variance and the bias term can be estimated by plug-in method.
More specifically, matrix ID can be consistently estimated by

(e (VMYMp) + & te(VMY_\Mp)  te(VMXMp) - te(VMXMg) |
o (YL, MYMp)  r(YL MY M) (YL MXG M) - (Y MXM)
D= m tI‘(XiMYMﬁ) tr(X{MY,lMp) tI‘(XiMXlMﬁ) s tI‘(XiMXkMﬁ)
w(XMYMp) (MY Mp)  te(XMXG M) - te(XMXMy) |

where

P o o s Ve 14
Pe (Y =0va—p¥ = Y X8, ) $5'A
and®=T- tr[(SA%\,) — 225\;1 gzzi,N] with SAN = WNGN, GN = (IN — pWN)fl and gii,N being
the ith diagonal element of Sy. In addition, the bias term b can be consistently estimated
by

N

h=D"1! srtt[artr[PsL]

where K and L are defined similarly as K and L except that 6%, G}, and S}, are replaced
with §, Gy and Sy respectively, and F = [F, 17].
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6 Discussions on spatial models with heteroskedasticity

Allowance of heteroskedasticy in pure spatial models is of theoretical and practical rel-
evance. As pointed out by Kelejian and Prucha (2010) and Lin and Lee (2010) among
others, if heteroskedasticity exists but homoskedasticity is imposed, the MLE gener-
ally is inconsistent. In viewpoint of applied studies, assuming homoskedasticity seems
too restrictive to be true. However, to the best of our knowledge, the MLE under het-
eroskedasticity has not been investigated so far in the literature. In this section, we give
some discussions on this issue, which is of independent interest.

6.1 Dynamic spatial models

Consider the following dynamic spatial model,

N
Vit = &+ 0 Y Wi NYjr + 0Yir—1 + €. (6.1)
=1

The above model is special case of model (1.1). Under some regularity conditions stated
in Section 2, the analysis of Theorem 5.2 indicates that the MLE for (6.1) has the following
asymptotic representation:

Y (Be+ i+ Sfer) Ti e

1 ;
1 Y By 4 Ji-1)'ZE ey +0,(1), (6.2)

V NT(C&_(U‘i_Ul) :Dl \/ﬁ
Zthl X;Z‘:e_let

where
| L E e Sl T X
D=7 Zt:Tl Yz Y Zt=T1 Y Vi Zt=T1 YT X |

Vi XiZe e L XiEEY o L XiE X

with ® defined the same as in Theorem 5.2 and
| [Frtio" St G (i = 5°Gi) ]
v = Dl Wtr[G;i](IN — (S*G;i])f ]
kal

Given the above asymptotic representation, invoking the central limiting theorem for
quadratic form (Kelejian and Prucha (2001), Giraitis and Taqqu (1998)), we have

VNT(& — w* + 1) % N(o, [ plim Dl} _1).
N,T— o0

6.2 Spatial panel data models with SAR disturbances

Another interesting spatial model, which receive much attention in practice, is spatial
panel data model with SAR disturbances, i.e.,

Y = a4+ pWNY: + Xi B+ uy;

(6.3)
ur = oMnuy + ey.
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where My is another spatial weights matrix. Lee and Yu (2010) make a rigorous anal-
ysis for the ML estimation of (6.3) under the assumption that e;; is cross-sectionally
homoskedastic. Using the method in this paper to deal with high dimensional variance
parameters, ®
exposition, we further introduce the following notations. Let

we can extend Lee and Yu's analysis to heteroskedasticity. For ease of

F =MnSi(In—0"Mn)"Y, G = (In—0"Mn)Si(In—0"*My) "}, H = My(Iy—0*My) ™%

Pr=(Iy —0*MN)WNY:, Qi = My[(IN —p*WN)Y: — XiB*], Ri= (In — 0" Mn)X:.
Define the (k4 2) x (k + 2) matrix D, as

1 25:1 PiEe' P+ 1 2%1 PlZe' Qi+ 6o Z;:l PiZ' Ry
D, = NT Zt:lTQ;Ze_elpt + G2 Zt:lTQ;Ze_el Qi +¢s Zthl QiT Ry
Yo RiZeP YIARIZELO L RIZLR:

with g1 = T[tr(G?) —2tr(G o G)], go = Ttr(F) —2tr(GoH)] and g3 = Ttr(H?) — 2tr(H o
)], where “o” denotes the Hadamard product.

Under some regularity conditions, we can show that the MLE for w = (p,0, ')’ in
(6.3) under cross sectional heteroskedasticity has the following asymptotic representa-
tion,

D1 [ SRS - o My) + g7z
VNT(& — w*) = D5 \/ﬁ Zthl e;HO’nglet +0,(1),
Vi1 Xi(In — *MN)'Zi, e
(6.4)
where G° and H° are defined similarly as Si’. Given the above result, invoking the
y N g
central limit theorem for quadratic form, we have

VNT(& — w) LN N(O, [ plim Dz} _1>.

N, T—o0

6.3 Homoskedasticity versus heteroskedasticity

It is seen from the above that the limiting variance of the MLE is not a sandwich form.
This result contrasts with the existing results in the literature such as Yu et al. (2008) and
Lee and Yu (2010), in which the limiting variance of the MLE has a sandwich formula.
The reason for the difference is the heteroskedasticity estimation. In the present paper we
allow cross-sectional heteroskedasticity, while Yu et al. (2008) assume homoskedasticity.
Under heteroskedasticity, the asymptotic expression does not involve €2, as seen in (6.2)
and (6.4). But under homoskedasticity, the situation is different. Still consider model

(6.1). If homoskedasticity is assumed and is imposed in estimation (let ¢*2 = E(elzt)), the

2

®The method to deal with high dimensional variance parameters o7 is as follows: First show % Zfi 1 (0 12 -
2)2 —

07)c =0p (1), see Proposition 5.1; then derive its convergence rate, see Propositions B.4 and B.6; then use this
result to show that the magnitude of the difference between the term involving S and the term involving

Yee is asymptotically negligible.
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asymptotic expression for the MLE is

Y1 eSx'er + i Jier + Xiq BYler +9

1 |
Y B et + Y Qe +o0p(1),

VNT(0—w* +vy) =D ——
( 2) 3 VvV NTo*2 T <1
Yo Xier

where
N T 1 ) 5 sl ! .. .
9=y ). [ N~ Ntr(sfv)} (e —0*%), Br =) (6°GN)'X;uiB*, Bf = WnBF,
it iI=0
-1 [ 1 * ok % * k0 —1 1 * * ok 0\ —1 '
vy = D; mtr(é 3G (Iy — 6*GY) ),mtr(GN(IN —5*GY) ),olxk ,
and
1 PYERAES To*2{tr(S7) — & [tr(S)1} ZtT:th'thl DT:th'X{
D5 = NTo?2 Y Y 1Y Y Vi 1Yia Y Yi 1 X
i Y XY Y XY T XX

From the above, we can see that the asymptotic expression under the homoskedastic-
2

it
Because D3 does not depend on the kurtosis, the limiting variance of @ — w* has a sand-
wich formula. In contrast, the MLE under heteroskedasticity has a limiting variance
not of a sandwich form, regardless of normality. The same phenomenon also occurs
for the spatial panel data models with SAR disturbances, see Lee and Yu (2010) for the
asymptotic result of the MLE under homoskedasticity. This results is interesting. Thus
estimating heteroskedasticity is desirable from two considerations: the limiting distri-
bution is robust to the underlying distributions; it avoids potential inconsistency when

ity involves ¢;,. So the limiting variance of @ — w* will depend on the kurtosis of e;.

homoskedasticity is incorrectly imposed.

7 Finite sample properties
In this section, we run Monte Carlo simulations to investigate the finite sample properties
of the MLE. The data are generated according to

N

Vit = &+ 0 Y wij NYjr + 0ir—1 + Xin f1 + XinP2 + Aife + eit

j=1
with (p,d, B1,B2) = (0.5,04,1,2). The number of factors is fixed to 2. The explanatory
variable x;;, is generated according to

Xitp = [(Ai + vip) fr + ity | 1[(Ai + ip)' fr + wigy > —3.5]

for p = 1,2. All the elements of a;, A;, ft, 7ip and u;;, are all generated independently from
N(0,1). The way to generate the explanatory variables here is similar as in Moon and
Weidner (2013). To generate the errors and heteroskedasticity, we consider the method
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similar as in Bai and Li (2014b). More specifically, we set e;; = \/{;e;; where 1; is defined

as 1
P =05+ YA,

1

where v; is drawn independently from U[0.2,0.8]. The error ¢; is equal to (x5 —2)/2,
where X2 denotes the chi-squared distribution with two degrees of freedom, which is
normalized to zero mean and unit variance.

The generated data exhibit heteroskedasticity. The generated x;; does not have a fac-
tor structure and is correlated with the factors and factor loadings, and the two regressors
x;n and x;;, are also correlated; the errors are non-normal and skewed.

The spatial weights matrices generated in the simulation are similar to Kelejian and
Prucha (1999) and Kapoor et al. (2007). More specifically, all the units are arranged in a
circle and each unit is affected only by the g units immediately before it and immediately
after it with equal weight. Following Kelejian and Prucha (1999), we normalize the spatial
weights matrix by letting the sum of each row be equal to 1 (so the weight is 2%/) and call
this specification of spatial weights matrix “g ahead and g behind.”

Adapting a criterion in Bai and Li (2014b), the number of factors is determined by

? = argmin IC(m)
0<m<rmax

with

N
1C(m) = —— Y In 1(67)2] — “1n [Ty — 6" W N+ T imin(N, T
(m) = 55 Y |(07)?] = < In Iy — " W] + - Infmin(N, T)]
i=1

+
2NT
and

1 & R s A2
(07")" = = Y (Wi = "5 — "Y1 — %P — A",
t=1
where the hat symbols with superscript “m” denotes the MLE when the number of
factors is set to m. We set 7max = 4.

The following four tables present the simulation results from 1000 repetitions under
the combinations of N = 100,125,150 and T = 75,100, 125. To measure the performance,
we compute biases and root mean square errors (RMSE), which are defined as follows.
We take p as the example to illustrate.

3 1 - AlS * 1 - Als *
Blas:;Zp()—p, RMSE:\/VZ(p()—p)z.
s=1 s=1

where p(®) is the estimator for p* in the sth repetition and v is the number of repetitions.

In all the simulations, the number of factors can be correctly estimated with probabil-
ity almost one. The first two tables report the performance of the MLE before and after
the bias correction under “1 ahead and 1 behind” spatial weights matrix. From Table 1,
we see that the MLE are consistent. As the sample size becomes larger, the RMSEs of
the MLE decrease stably. However, we also find that the ratio of the bias relative to the
RMSE for the MLE of ¢ is considerably large, the ratio for p, albeit not as large as J, is still
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pronounced, especially when N /T is large. This causes problems in statistical inference.
We then investigates the performance of the bias-corrected MLE. From Table 2, we see
that the bias-correct estimator performs well. The biases of the original estimators have
been effectively reduced. To evaluate the estimator of the limiting variance, we calculate
in simulations the t-statistics of the four regression coefficients and F-statistic for the null
w = 0 based on the original estimators and the bias-corrected estimators. It is seen that
the t-test would suffer a mild size distortion based on the original estimator and this
issue has been alleviated after bias correction. Overall, the empirical sizes obtained from
the 1000 repetitions are close to the nominal size. The next three tables report the perfor-
mance of the MLE under ‘3 ahead and 3 behind” spatial weights matrix. The simulation
results are similar as the case under “1 ahead and 1 behind” weights matrix. So we do
not repeat the detailed analysis.

Table 1: The performance of the MLE before bias correction
with “1 ahead and 1 behind” spatial weights matrix

N T 4 P ﬁ 1 ‘B 2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 75 | -0.0014 0.0032 | 0.0007 0.0034 | 0.0003 0.0132 | -0.0001 0.0133
125 75 | -0.0014 0.0029 | 0.0006 0.0030 | -0.0003 0.0118 | -0.0002 0.0118
150 75 | -0.0014 0.0027 | 0.0007 0.0028 | 0.0001 0.0106 | -0.0006 0.0103
100 100 | -0.0010 0.0026 | 0.0004 0.0029 | 0.0002 0.0111 | 0.0003 0.0107
125 100 | -0.0009 0.0023 | 0.0004 0.0025 | 0.0007 0.0102 | 0.0001 0.0098
150 100 | -0.0010 0.0022 | 0.0006 0.0024 | -0.0001 0.0091 | -0.0003 0.0092
100 125 | -0.0008 0.0024 | 0.0004 0.0027 | -0.0001 0.0099 | 0.0006 0.0099
125 125 | -0.0007 0.0021 | 0.0004 0.0023 | 0.0000 0.0086 | -0.0002 0.0090
150 125 | -0.0008 0.0019 | 0.0004 0.0021 | 0.0000 0.0079 | 0.0002 0.0083

Table 2: The performance of the MLE after bias correction
with “1 ahead and 1 behind” spatial weights matrix

N T J P 1 B2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 75 | -0.0002 0.0028 | 0.0002 0.0033 | 0.0007 0.0132 | 0.0006 0.0132
125 75 | -0.0001 0.0025 | 0.0000 0.0029 | 0.0001 0.0118 | 0.0004 0.0118
150 75 | -0.0001 0.0023 | 0.0001 0.0027 | 0.0005 0.0106 | -0.0000 0.0102
100 100 | -0.0000 0.0024 | -0.0000 0.0028 | 0.0005 0.0111 | 0.0007 0.0108
125 100 | 0.0000 0.0021 | -0.0001 0.0025 | 0.0010 0.0102 | 0.0006 0.0098
150 100 | -0.0000 0.0020 | 0.0001 0.0023 | 0.0002 0.0091 | 0.0002 0.0091
100 125 | -0.0000 0.0022 | 0.0000 0.0026 | 0.0002 0.0099 | 0.0010 0.0099
125 125 | 0.0001 0.0020 | -0.0000 0.0023 | 0.0003 0.0086 | 0.0002 0.0089
150 125 | -0.0000 0.0017 | 0.0001 0.0020 | 0.0003 0.0079 | 0.0005 0.0083
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Table 3: The empirical sizes of t and F statistics
with “1 ahead and 1 behind” spatial weights matrix under 5% nominal size

N T ] 9 PP B F | 5 p P B F
\ before bias correction \ after bias correction
100 75 | 95% 69% 74% 7.6% 10.7% | 6.7% 57% 73% 7.5% 8.7%
125 75 | 10.5% 8.5% 8.6% 6.5% 11.2% |72% 7.7% 88% 6.3% 8.4%
150 75 | 11.3% 7.5% 72% 6.3% 11.6% | 6.1% 62% 72% 63% 84%
100 100 | 7.8% 62% 6.7% 53% 72% |53% 61% 65% 54% 59%
125 100 | 85% 6.3% 6.8% 6.5% 99% |6.0% 59% 7.0% 6.0% 84%
150 100 | 92% 7.8% 7.0% 6.8% 9.6% |56% 7.0% 72% 64% 7.4%
100 125 | 83% 8.0% 6.1% 69% 82% |61% 7.0% 61% 72% 7.2%
125 125 | 83% 7.0% 61% 71% 73% |75% 57% 59% 6.8% 6.6%
150 125 | 83% 6.1% 5.6% 69% 92% |55% 54% 59% 65% 6.1%
Table 4: The performance of the MLE before bias correction
with “3 ahead and 3 behind” spatial weights matrix
N T P 0 B B2
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 75 | -0.0015 0.0034 | 0.0007 0.0039 | 0.0003 0.0124 | 0.0001 0.0124
125 75 | -0.0016 0.0031 | 0.0008 0.0035 | 0.0002 0.0114 | -0.0001 0.0113
150 75 | -0.0015 0.0030 | 0.0009 0.0033 | 0.0001 0.0104 | -0.0001 0.0103
100 100 | -0.0013 0.0029 | 0.0007 0.0034 | 0.0004 0.0108 | 0.0001 0.0106
125 100 | -0.0011 0.0026 | 0.0006 0.0031 | 0.0003 0.0098 | -0.0008 0.0098
150 100 | -0.0010 0.0023 | 0.0006 0.0026 | 0.0004 0.0087 | -0.0003 0.0087
100 125 | -0.0009 0.0026 | 0.0005 0.0030 | 0.0003 0.0099 | 0.0007 0.0097
125 125 | -0.0008 0.0023 | 0.0005 0.0027 | 0.0003 0.0087 | 0.0004 0.0086
150 125 | -0.0009 0.0021 | 0.0006 0.0024 | -0.0001 0.0078 | 0.0003 0.0078
Table 5: The performance of the MLE after bias correction
with “3 ahead and 3 behind” spatial weights matrix
N T P o P B2
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 75 | -0.0001 0.0030 | -0.0000 0.0038 | 0.0006 0.0124 | 0.0006 0.0124
125 75 | -0.0002 0.0027 | 0.0001 0.0034 | 0.0005 0.0114 | 0.0004 0.0113
150 75 |-0.0001 0.0026 | 0.0001 0.0031 | 0.0004 0.0104 | 0.0004 0.0103
100 100 | -0.0002 0.0026 | 0.0001 0.0033 | 0.0007 0.0108 | 0.0005 0.0106
125 100 | -0.0001 0.0024 | 0.0000 0.0030 | 0.0006 0.0098 | -0.0004 0.0097
150 100 | 0.0001 0.0020 | -0.0000 0.0025 | 0.0007 0.0087 | 0.0000 0.0087
100 125 | -0.0001 0.0024 | -0.0000 0.0029 | 0.0005 0.0099 | 0.0010 0.0097
125 125 | 0.0000 0.0022 | -0.0000 0.0026 | 0.0006 0.0087 | 0.0007 0.0086
150 125 | -0.0001 0.0019 | 0.0001 0.0023 | 0.0001 0.0078 | 0.0006 0.0078
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Table 6: The empirical sizes of t and F statistics
with “3 ahead and 3 behind” spatial weights matrix under 5% nominal size

N T ] 9 PP B F | 5 p P B F
\ before bias correction \ after bias correction

100 75 | 85% 73% 65% 55% 88% |54% 6.1% 65% 54% 6.6%
125 75 | 11.0% 7.1% 79% 7.5% 10.8% |6.1% 7.0% 7.7% 7.4% 85%
150 75 | 123% 7.6% 7.0% 7.0% 12.6% |7.1% 68% 6.8% 6.8% 9.4%
100 100 | 9.3% 7.8% 6.7% 59% 94% | 6.0% 67% 68% 6.0% 7.5%
125 100 | 99% 83% 72% 71% 94% |62% 7.0% 7.1% 6.6% 6.8%
150 100 | 7.8% 6.0% 6.6% 54% 7.8% |51% 49% 64% 54% 5.9%
100 125 | 84% 65% 6.8% 58% 79% |48% 58% 68% 6.0% 6.8%
125 125 | 84% 64% 6.4% 6.0% 74% | 65% 57% 65% 5.6% 65%
150 125 | 85% 6.5% 6.0% 6.6% 86% |53% 57% 60% 64% 6.0%

8 Some extensions

The analysis of the paper can be extended to more complex dynamics of the model.
Consider the following model

Yi =a+ pWNY: +6Yi1 + oMNYi1 + Xef+ Afi +er. (8.1)

where My is another spatial weights matrix, which is assumed to have similar proper-
ties as Wy (Assumption E). If My is identical to Wy and the common shocks part Af; is
absent from (8.1), the model reduces to the one consider by Yu et al. (2008). To accom-
modate the new dynamics of the model, we make the following assumption to replace
Assumption F:

Assumption F'. Let G}, be defined the same as in Assumption F. We assume

limsup ) |[(6"Gi + @' GyMy)'|_ < ¢ timsup ) [(6°Gy +o"GiM)'|| <€

N—eo |50 o N—eo |20 !

Using the methods stated in Section 4, we can derive the asymptotic representation of
the MLE for model (8.1) in a similar way. In fact, the MLE has a similar limiting variance
expression as in Theorem 5.1. But the bias expression is different, due to the different
dynamics of the model. Let ¢ = (p,6,0,B')" and ¢ be the MLE. Define Y; 1 = MyY;_;
and Y 1 = (Yo, Yq,...,Yr_1). We state the result in the following theorem.

Theorem 8.1 Under Assumptions A-E, F', G-H, when N, T — oo, VN/T = 0and V/T/N —
0, we have

VNT(¢ — ¢* +by) S N(O, [ plim ]1)4,} _1),

N, T—00
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tI‘(Y,M*YMp*)—I—CD tr(Y’M*Y,1Mp*) tr(Y’M*Y,lMp*) oo tr(Y’M*XkMF*)

tr(YllM*YMF*) tr(YilM*YflMF*) tr(¥i1M*¥flMF*) T tf(¥L1M*XkMF*)
x| (Y M*YMp-) tr(Y  ,M*Y_1Mp+) te(Y  M*Y_1Mp) - tr(Y  M* X Mp-)
tr(X,/(M*YMp*) tr(X,’(M*Y_lMF*) tr(X,’cM*Y_lMp*) oo ’EI'(X;(M*X](MF*)

with ® defined the same as in Theorem 5.2 and

AV SRE A (AE AT 4 hptrl PR

1 *
_ ~7tr[P=L*]
b, = D! NTU'F
p Nrtr[Pe)’]
Oxx1
with ) )
0 0 0 - 0
tr[WNT Gy 0 0 o 0
K* — | tr[WNI2Gy tr[WNT Gy 0 e 0
_tr[WNl“TflGl"{,] tr[WNFT72G;]] tr[WNFTf?’G;]] s 0_
and _ )
0 0 0 <o 0
tr(Gyy) 0 0 - 0
L= | tr[GyT] tr(Gy) 0 o 0f
tr[GuTT 2] &[GRTT 3] tr[GRTT4] -+ 0]
and ) )
0 0 0 <o 0
tr(MnGYy) 0 0 - 0
JF = tr[MNT Gy tr(MnGy) 0 e 0
{tr[MNTT2Gy] tr[MNTT 3Gy te[MNTT4GE] -+ 0]

where I' = §*G}; + 0* G My,

We use simulations to illustrate the performance of the MLE. The data are generated
according to (8.1) with (p,6,0) = (0.2,0.4,0.3). The factors, factor loadings, errors and
heteroskedasticity are generated in the same way as in Section 7. Other prespecified
parameters such as the number of factors, the number of regressors and the true values
of B are also the same. Wy is a “3 ahead and 3 behind” weights matrix and My is a “1
ahead and 1 behind” one. For simplicity, the number of factors is assumed to be known.
Tables 7 and 8 reports the simulation results based on 1000 repetitions.

Tables 7 and 8 show that the maximum likelihood method continue to perform well.
The RMSE decreases as the sample size becomes larger, implying that the MLE is con-
sistent. The bias has been effectively reduced after the bias correction.
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Table 7: The performance of the MLE before bias correction

N T 4 J Q ﬁl ,BZ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 | 0.0005 0.0068 | -0.0025 0.0049 | -0.0000 0.0043 0.0008 0.0155 | 0.0003 0.0157
100 100 | 0.0002 0.0044 | -0.0012 0.0031 0.0001  0.0030 0.0005 0.0107 | 0.0001 0.0108
100 150 | 0.0004 0.0036 | -0.0008 0.0024 | -0.0000 0.0024 0.0004 0.0091 0.0002  0.0089
200 50 | 0.0009 0.0045 | -0.0027 0.0040 | 0.0002 0.0029 0.0005 0.0110 | -0.0007 0.0114
200 100 | 0.0004 0.0031 | -0.0013 0.0024 | 0.0000 0.0020 | -0.0001 0.0076 | 0.0002 0.0077
200 150 | 0.0004 0.0025 | -0.0009 0.0018 | 0.0001 0.0017 | 0.0000 0.0060 | -0.0004 0.0063
300 50 | 0.0010 0.0040 | -0.0025 0.0034 | -0.0001 0.0024 0.0001 0.0088 | 0.0001 0.0089
300 100 | 0.0004 0.0026 | -0.0013 0.0021 0.0001  0.0017 | -0.0000 0.0059 0.0003  0.0064
300 150 | 0.0004 0.0021 | -0.0009 0.0016 | -0.0000 0.0014 | -0.0001 0.0049 0.0001 0.0051

Table 8: The performance of the MLE after bias correction

N T o 4 9 ,Bl ﬁZ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 | -0.0001 0.0067 | -0.0001 0.0042 | -0.0001 0.0043 | 0.0011 0.0155 | 0.0007 0.0157
100 100 | -0.0002 0.0044 | 0.0000 0.0028 | 0.0001 0.0030 | 0.0006 0.0107 | 0.0003 0.0108
100 150 | 0.0001 0.0035 | -0.0000 0.0023 | -0.0001 0.0024 | 0.0005 0.0091 0.0003  0.0089
200 50 0.0003 0.0044 | -0.0003 0.0029 | 0.0001 0.0029 | 0.0008 0.0110 | -0.0003 0.0113
200 100 | 0.0000 0.0031 | -0.0001 0.0020 | -0.0001 0.0020 | 0.0000 0.0076 | 0.0003 0.0077
200 150 | 0.0001 0.0025 | -0.0001 0.0016 | 0.0000 0.0017 | 0.0001 0.0060 | -0.0003 0.0063
300 50 0.0004 0.0039 | -0.0001 0.0024 | -0.0002 0.0024 | 0.0004 0.0088 | 0.0006 0.0089
300 100 | 0.0001 0.0026 | -0.0000 0.0017 | 0.0000 0.0017 | 0.0001 0.0059 | 0.0005 0.0065
300 150 | 0.0001 0.0020 | -0.0000 0.0013 | -0.0001 0.0014 | -0.0000 0.0049 | 0.0002 0.0051

The present analysis can be also extended to allow SAR disturbance. Suppose e; =
@Mnye; + €, where ¢ satisfies Assumption C. Under this specification, e; has weak cross
sectional correlation. To derive a tractable expression, pre-multiplying Iy — @My on
both sides of (3.1), we have

Y =a*+ pWNYt +oMyY; — p(OMNWNYt +0Yi_1 — @IMNY;i_1+ Xt,B — MNXt,B(D + A*ft + &

where a* = (Iy — @My )a and A* = (Iy — @My )A. Now we see that the above model is
similar as (3.1) except for high order spatial lags. The analysis of the MLE for the above
model is similar as that of (3.1).

9 Conclusion

This paper considers spatial panel data models with common shocks, in which the spatial
lag term is endogenous and the explanatory variables are correlated with the unobserv-
able common factors and factor loadings. The proposed maximum likelihood estimator
is capable of handling of both types of cross sectional dependence. The results make
it possible to determine which type of cross-section dependence or both are present.
Heteroskedasticity is explicitly allowed. It is found that when heteroskedasticity is es-
timated, the limiting variance of MLE is no longer of a sandwich form regardless of
normality. We provide a rigorous analysis for the asymptotic theory of the MLE, demon-
strating its desirable properties. The Monte Carlo simulations show that the MLE has
good finite sample properties.
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Appendix A: The proof of consistency

This section provide a detailed proof on the consistency. Throughout the proof, we
say My > My for two matrices My and My, if My — M, is semi-positively definite. In
addition, Let Xyt be a generic random variable which depends on N and T, we say
XNt = Op(ant) or XNt = 0p(ant), where ayt may be T-1,N-! N-V2T-1/2 o other
magnitudes appearing in the paper, if and only if for every € > 0, there exists a constant
M such that

P(|ﬂ§1TXNT| > Me) <e

for all N and T; or

li P( S XnT| > ): .
N,TI}E}OO |aNT NT| =€ 0

where N, T — oo denotes that N and T pass to infinity simultaneously (joint limit), see
the detailed discussion on joint limit in Phillips and Moon (1999). More specifically, let
{N,,} denote any increasing sequence of N and {T;,} denote any increasing sequence of
T. Let {by} be a sequence whose mth element is b,, = (N, T,y). Then the preceding
limit is equivalent to

i w > ):
n]llg}opoaNmeXNmTWI >e) =0

for all sequences {b, }.

The uniform version of Op(anTt) and 0,(ant) are defined similarly. We say Xnt(6n)
is Oy(ant) or op(ant) uniformly on @y, if and only if for every € > 0, there exists a
constant M, such that

p( sup |aytXnr(0y)| > M€> <e
ONEON
for all N and T; or
lim P( sup |ayrXnt(0n)] > e) = 0.

N, T—o0 INEON

For notational simplicity, in the presentation of the following uniform results, we drop
the superscript “N” from the symbols 6 and ®y for notational simplicity.
In addition, we define the following notations for ease of exposition in Appendix A:

X0 = Y1, Bo =19, Bo =907
th+1 = SE(Yt—lfS* + Xt,B*), Br+1 = 0, .Blt+1 = P*/ (A1)

The following lemmas are useful for the proof of consistency.

Lemma A.1 Under Assumptions A-H, we have

1 k+1 . T ) . . .
(a) sup |} (Bp — B3) ) XipyMIIy — (0 — p")Si]ér| = 0p(1),
0c® p=0 t=1
1 d * * *\ Q¥ v * * 15
(b) sup |5z X f'A[In = (0 — p")SKI MLy — (p — 0")Skler| = 0,(1),
6c0 =1
1 s *\ Q% - - £\ Q* 14
() sup |smm Y élIn = (p— ") SR Tee ANEL I — (0 — p*)SK e | = 0p(1),




(d) sup
PcO®

1 L *\ O* - *\ O* .. *
w7 Lty = (o= PSR — (o = )i e 200] | = oy ).
t=1
where Bo, Bry1, Xio and Xy41 are defined in (A.1) and the parameters space © is defined as
Q= {9 = (W, Zee, A) ‘ |w|| <C; Ct <e? <CVi; %A’Z;}A = 1,}.

Proor oF LEMMA A.1. Consider (a). The left hand side is bounded by

p= 0cO®

k+1 1 T o

Y |sup 16s = Byl g 1o Xip Ml — (0 = p")Sile
t=1

Since B is in a compact set by Assumption H, it suffices to show

1 ., o
sup ‘* Y Xi,M[In—(p—p )SN]et’ = 0,(1) (A.2)
0cO® NTt:1

forall p=0,1,...,k+ 1. The left hand side of (A.2) is bounded by
1 T
sup ’ﬁ in{p — (0 —p")Sy] et‘ + sup ’—X M[Iy — (o — p*)Sx]é| = 1 + b, say,
IS(C) t=1 PcO

where X, = (%1p, ®2p, ..., XNp)" with %, = T-1 ZtT 1%itp and & = (&y,é,...,6N) with
g =T 'YL, ejy. Consider term I;. By M = &' — N"'Z_TAA’S.!, we can rewrite it as

1 < 1 < .
NT Z X;pz‘ee (IO P )N Z Xgpz‘eelsNet
=1

sup
0cO t=1
—iix’ o AN e + ( )iix Yo AN'T,SNe (A3)
Nth t ee ee Ct p—p Tt—1 ee ee ONCt .
<sup‘1iilx e +suptr[1§i 1/\/\’1ix e}
T —5 XitpCit N7l —5 5NN = itp€it
NT =5 o7 €@ 21’:1]':1 (71'2(7]'2 'TH
1 %i 1 1 %% 1,1 ZT:
+sup o — 07| \— Xyt +suplo—p*| - tr| 5 AN Y i |,
(256) NTS S e 21:1;:1‘71'2‘7]'2 g

where ¢; = ):(1,\721 Sioneot- We use I3, 14, ..., I to denote the four expressions on right
hand side. Term I3, by the Cauchy-Schwarz inequality, is bounded by

oo [§ B 4] NV E [ Bower] T < [ £ 7 Doss]

1/2
| =0,
@ i

where the first inequality is due to Assumption H and the second result is due to
E(NTYEN, [T 18l xipei[?) = O(T7Y) for p = 0,1,...,k+ 1 under Assumptions A
and C. Thus I3 = O,(T~!/2). Consider I;. Ignore sup,_q, the expression of I in the trace
operator is bounded in norm by

[k e S 7 e

=1j=1'" =1

1 ’ }1/2
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However,
1 &1 1 1 1
— Y SP=tr| = Y SAM| =tr| S AZIA | =[] =7 (A4)
N;2 M;Z } M “} ’

Given this result, by the boundedness of 0 by Assumption H,

1
*ZOAH/\ I” < CNZ 2|M I” =

i—1 7
So Iy = O,(T~1/2) by E(W YN, ijl Tyl xXipet|?) = O(T~!) under Assumptions
A and C. The remaining two terms of the right hand side of (A.3) can be proved to be
O,(T~1/2) similarly as the first two terms by noticing |p — p*| is bounded by Assumption
Hand, forp =0,1,...,k+1,

E[;}i‘;ixitpéit 2} =0(T™), E[;pﬁ%\;i%éﬁm _orY),  (AS)

i=1j=1
where the two results in (A.5) are shown in Lemma A.2(e) and (f) of Bai and Li (2014a).
Given the above results, we have I; = O, (T~!/2). Term I, can be proved to be O,(T~1/2)
similarly as I;. So we have (a).
Consider (b). By the normalization condition Y.} f;* = 0, ¢; in the expression can be

replaced with ¢;. So the expression on the left hand side is

1 L * */ 7' * 1 g * LIREIAY,
sup | g L SN Men = (p = 07) g L fiT AT S Me

0cO

1
—(p—0") th*’A*’MSNeth ) NTZf:"A*/S MSje;

<SUP] th*/A*/Met’+SUP|P ol | NTZf?"A*’S [Nt
0O

+sup lo—p7l \ NTEfZ"A*’MSNetHsup\p pr? \ NTEf?"A*’S MSNet‘

We use I7, I, . .., I1p to denote the four expressions on right hand side. By the definition
of M, term I, is bounded by

sup

‘NT Z Z 2ft /\*elt‘ —|—sup
0cO i=1t= 0c®

1 o 1 N T
O‘ZAZA><NTZ_21; o;

(6>

By the Cauchy-Schwarz inequality, the first term is bounded by

sup [ 1 S [ X1 v

PcO®

}1 /2 1)
by Assumptions B and H. The expression of the second term in the trace operator is
bounded in norm by

1 N N

C[i]in/\?HZ}UZ[NZ;ﬂMi|2} [N;H,}i ethr/z 0,(T~172).

i=1"1i =
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So we have [; = Op(T*UZ) Treating S, A™ as anew A* and SNet as a new e; and noticing
that ]p p*| is bounded by Assumption H as well as E(N"' YN, [T L fré:]1%)
O(T™1), terms Ig, Iy and I;p can be proved to be O p(T™ 172 similarly as I;. Then we have
(b).

Consider (c). The left hand side of (c) is bounded by

T
tr|—— Y A'Z el S IA ||+ 2 — |- |t AT tee S A
Sgg(g r[NzTg ee €t€t&ee } + f)lelg‘p p | r[NZTZ ee etet }
— 0" ! AT S5eel ST A
+sup |P Y | tr NZTZ ee Netet ee
[ISC)]

We use I, I1» and I3 to denote the above three expression. First consider I;3. Since
lo — p*| is bounded by Assumption H, it suffices to prove

sup

ZAzeelsNetets I 1A” 0,(1).
0c®

tr[leT

The left hand side of the above equation is bounded by

1 & e ok ok ko
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1A215 NEESHEIA 1A215*“’521A
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where & = S3é;. The expression of the first term in the trace operator can be written as

N N T
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which is bounded in norm by
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The first factor is r by (A.4) and the second factor is O, (T~!/?) by Lemma A.2(f) of Bai
and Li (2014a). So we have that the first term of (A.6) is O,(T~'/2). Consider the second
term. By the boundedness of 0 by Assumption H, there exists a constant C such that
TS5 ERSy < C-Iy. Given this result, the second term is bounded by %Cr, which
is O(N~!). Consider the third term. By M = 2! — N7IZ TAA'S,! is semi-positive
definite, we have

1
N

1

Ogtr[ AT SRee ST A gﬁ-/s SLAATIS e
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Notice the last expression is independent with parameters and is Op(T~!). Given the
above results, we have I;3 = O, (T~ 2y 4+ 0 p(N™ D). Terms Ij; and I, can be shown to
be O,(T~1/2) + O,(N~!) similarly as I;3. So we have (c).

Consider (d). The left hand side of (d) can be written as

T
1
SQE(I:)) tr [z‘ee NT Z% etet ee } (P Y )tr[ ee NT ZSN etet Zee)}
*\2 1 L * */
+(P—P ) tr[ ee NT ZS (etet Z‘ee)SN} ’
which is bounded by
u ! -1 1 T ’
22}@9 tr|: ee NT Z(etet - Zee)] ‘ + 2225 ‘P —p ‘ - |tr [Zee m ; SN(etet - Zee)] ’

+SUP\P p*|?- tr[ ee NTZSN éép — o, ) SA } = hy +2I15 + L1, say.

Consider I4. Since |p — p*| is bounded by Assumption H, it suffices to prove

sup
0cO®

tr[Zee NT ZSN 616} — Zje)Sl*\}} = 0,(1).

The left hand side of the above equation is further bounded by

iz% i &, ) + sup ‘tr[ 228615* "/5*/} (A7)

0cO®

sup ‘
0cO

By the Cauchy-Schwarz inequality, the first term of (A.7) is bounded by
1T& 1917211 &1 &, 211/2
su — Y=Y [&2 - E@)] ,
{BGS[N;A }[N;}th Gl

which is O,(T~1/2) by Lemma A.2(c) of Bai and Li (2014a). By the boundedness of ¢?,
there exists a constant C such that £,' < CIy. The second term of (A.7) is therefore

bounded by

1_ _
Cx° Z'SySne =0,(T ).

So we have I15 = OP(T*UZ). Terms I14 and I15 can be proved to be OP(T*UZ) similarly
as I1¢. So we have (d). This completes the proof of Lemma A.1. [J

Lemma A.2 Under Assumptions A-H, we have

1 o . .
(a) GFtrlEIME] = Op([|& — w %),

1 > . .
(b) B M) = Oy (1 — '),

1 s . N
(€) 7 rlEAMEs] = O, (& — '),



1 * ! 3o ~ *
() ptl(FF)2AME] = Op(j@ — @),

1 K/ Tk * o 7 *
() e tl(FF ARz = O o — ).

where 21 and E, are defined in (A.21) below.

N

Proor orF LEMMA A.2. Consider (a). Notice that ]\A/I < del < C - Iy for some constant C,
the left hand side of (a) is bounded by

A * 1 */ Tk x/ o*/ o* * x/ Tk A, *
C(p— ")t | (B 2AYSYSR A" (FYF) 2] = 0y (j@ — ' P)

by Assumption B.
Consider (b). The left hand side is equal to
k+1 . 1 » i
L (0= By = Byte [ A7 SUALGF

which can be further written as

k+1

Z(ﬁ—p*)(/%p—ﬁ;;)tr[N ASEL X | (A8)
p=0

k+1 1 o

+Z p—p") ,Bp)tr[mA*/S £IANE X, F]

Notice that

AYSNEL X, F*

|7
So the first term of (A.8) is Op(||&@ — w*||?). Also notice that
NSNS AN X F

}1/2 [% ; H;téxﬂpft*uz} v = 0,(1).

|5er
1 1

SC[NH; 7] (¥ HZSNA*

So the second term of (A.8) is O, (||& — w*||?). Given the above results, we have (b).

The proof of result (c) is similar as that of result (a). The proofs of results (d) and
(e) are similar as that of result (b). The details are therefore omitted. This completes the
proof of Lemma A.2. [J

Proo¥ or Prorosition 5.1: Consider the following function

1
L(8) = ZNT Zzt (8,0,B,A,F)'2.1Z:(5,0,B, A\, F) — N In [Ze|

1 1 1
fll’l |IN pWN| + 711’1 |Z — Nh’l |IN — p*W| + i (A9)



where
Zt((S,p, :8/ A, F) = Yt — (SYt—l — pWYt — Xtﬁ — Aft

The above function is a centered objective function and will be used in the subsequent
analysis. Given A, §, p and §, it is seen that the factors F maximize (A.9) at

f(6,0,B,A) = (NZLA)TIATH Y — 8Y 1 — pWNY: — XiB). (A.10)

Substituting (A.10) into (A.9) to concentrate out F, the objective function now is

T

‘9= ZNTZ = Y1 — pWYi = Xif = Afs) M(Y; = 0Ypq — pWY; — XiB — Afi)
t=1

1 1 1 1 1
In [Zee| + = 1n|IN pW|+—ln]Z —Nln|IN—p*W|—|—§, (A.11)

2N

where M = 2,1 — S IA(AZIA)IANE = 2.1 — LEIANELY, where the second
equation is due to the normalization condition %A’Z;ll\ = I. By Yy = 01+
p*WyY; + X B* + A*f + é;, we have

Yy = (In — p*WN) T (6 Y1 4+ XiB* + A ff + &),
which implies

Yt — 5Y.t,1 — pWNYt — thB = (IN — pWN)Yt — 5Y.t,1 — Xtﬁ
= (In — pWN) (I — 0" WN) T (8" Yeo1 + XiB™ + AT ff +é1) — 6Yi 1 — X

Notice that (Iy — pWn) (Iy — p*Wn) ™t = Iy — (p — p*) S}y with S = Wy (Iy — p*Wn) 1
Then we can rewrite the preceding equation in terms of the notations in (A.1) as

Yt — 5Y't,1 — pWNYt — Xt,B

ka1 A12
= = X, XplBo = B3+ [Ix = (0 = PISUIA'S; + [ = o= ¢7)5i (A.12)

Using (A.12), the objective function (A.11) can be further written as

L(8) = L1(0) + L2(0),

where
1 k1 k+1 A
— _g; ﬁq)NT r(X,MX,)
2NT th*’/\*’ — (o —p")SNI"M[In — (p — p*)SNIA™ f
k+1 1 A 1 1 1

+ L (B By ;x;pM[IN —(p—p")SKIA" — Scte(R) + s I [R|+ 3



and

1 k+1 T -
£2(6) = ~7 3 (B — B3) X Xip Ml — (o — p")Sies
p=0 t=1
1 L x/ A x/ * * 1/ A7 * * 74
tNT Y SN [In = (0 — ") SN M[Iy — (0 — p*) S Jéx
t=1
1 4 ./ * * /5 —1 Is—1 * * 75
+ IN2T Zet[IN - (P -p )SN] Zee AN Zee [IN - (10 -p )SN]et

~

=1

~

— v Lo e[l = (o — )RV E2l Iy = o — SR (e — =5

t=

—_

with

R = (In = pWn)(In = p" W) 7' E5, (In — p" W) ™ (In — pWN) 2
Since § maximizes the objective function, we have £1(8) + L2(8) > L£1(8*) + L2(6*). Tt
is easy to see that £1(0*) = 0. Given this result, we have £1(8) > L£,(0*) — L2() >
—25Up,cq |£2(0)|. However, Lemma A.1 shows that [£>(6)| = 0,(1) uniformly on ©.
Thus, £1(8) > —|0,(1)|. Now consider £;(f), which can be alternatively written as

. 1 k+1 k+1 . . 1 S
£400) = 3 1. (B~ B3)(By — B3) e, M)
p=Vq=
1 = 1 0 1. . 1
— st M) - {ﬁtr(R) — 5 In|R| - 5}
with
o *\ v pxpx px\—1/2 A *\ Qk * (I px\1/2
=3 (Bp—Bp)XpF"(F'F") 1% — [In — (p — p") SN A" (FV'FY)
p=0
and

R = (In = pWn) (In = " W) 1 E (In = p W) (In = pWN) e
It is seen that the three expressions of £1(6) are all non-positive. The first two expressions
are apparent to be non-positive. Now consider the third expression, let 7; be the ith-
largest eigenvalue of the matrix

A =3V Iy — pWN)(In — 0" Wn) 125 (In — p*WN) Y (In — pWN)'ELY2 (A13)

ee

Since A is symmetric, all the eigenvalues are real. Now the third expression of £;(6) is
equivalent to

N 1 1 N
Int,— = | = (z—Int;,—1) <0. (A.14)
=1

2 2N =

1 N 1

“lan kTN

by the fact that f(x) = x —Inx — 1 achieves its minimum value 0 at x = 1. Given
L£1(0) <0 forall § and £1(9) > —|o,(1)], we have

k+1 k+1 . . 1 o
L. L (By = By By — By tr (X MXa M) = 0, (1); (A.15)
p=0g=



L’cr(17 Mpy) = op(l) (A.16)

itr(fz) ~ 1 IR| — 5 = op(1). (A.17)

We first prove consistency of @ under the local identification conditions, i.e., under
Assumption G(i). Notice that the left hand side of (A.15) is equivalent to

(& — W) Da(@ — w*) = 0,(1).

where ]]ADa is the matrix D, when A = A and ., = 3. By Assumption G(i), ]f)a is
positive definite, we have @ 2y wr.
When Assumption G(i) fails, we show that the consistency of @ can still be obtained

by Assumption G(ii). We first prove p LN p* under the global identification condition
(3.4). By (A.14), equation (A.17) is equal to

1 N
Consider matrix A in (A.13). By the boundedness of p, c?*iz, it is easy to see T; € [Cil, C]
for all i for some large constant C. In addition, there exists a constant b (for example

b= ﬁ), such that x —Inx — 1 > b(x — 1)? for all x € [C~!, C]. Given this result, we have
L@y - Lmp -1z ii( St —1) > b—i(r 1= b—HA—I
2N 2N 2 2N =1 L 2N NI|| »
implying

L2

Lja= P = o)
Let Yy = (In — pWn) (In — 0*Wn) 7! = Iy — (0 — p*)S%- Now A = 2129\ 2x ¥ 22172,

The above result is equivalent to
1 X *
Ntr[(z: V2§ s @ $-1/2 [y (B2 s S IN)} = 0,(1),
which can be written as
1
Nt [2 2(FNmi W — S ) S (TN WL — See) S0 1/2} =0,(1).

However, by the boundedness of 67, there exists some constant ¢ such that £,'/2 > cIy.
Thus

1
0,(1) = Ntr[z 2(§NmE W — S ) Sl (TN B — See) S0 1/2]
1 ) . X
> ¢t ctr| (PNEHy — L) (EnZi ¥y - 0| = ¢ H‘Isz* ¥ —Le|* > 0.

So we have
—H‘I’NZ ‘FN ZeeH = 0p (1).



By ¥y = Iy — (0 — p*)S}, the above result is equivalent to

1 al *2 ~2 A * 2
NZ(UZ' —0; _Z(P_P) llNU + ZSZ]NU )
i=1
21 - = *2 * *2 2
(p X; 12:# ( Z]N(T _‘_S]zNOr P p ZSZpN p,NUp> :Op(l)‘
1: j=1,j#i

The two expressions on the left hand side are both nonnegative, so we have

1 N * A A

L (02 =07 —2(p— 0)Si a0 + (5 ZZS,]NU ) = 0,(1), (A.19)
i=1
21 g0 & 2 2
)NZ Z (l]NU* +S]1NU ZSZPN ]pN‘T ) :Op(l). (A.20)

i=1j=1,j#i

Result (A.20) implies p L~ p* in view of (3.4). Given the consistency of p, equation (A.15)
now can be simplified as

k k .
Y 3By~ By) (By — By qgtr () MX, Mr) = 0,(1).

Let &F = (4, ") and w'* = (6%, 8*'). By the definition of Dy, the preceding equation is
equivalent to
(@F — w™)Dy(@&" — w™) = 0,(1).
where D, is the matrix of D, when A = A and T = . By Assumption G(ii), we
have & & w'. Given the consistency of p and &', we have proved @ P, w* under
Assumption G(u).
Given the consistency of g, equation (A.17) now can be simplified as

N *2 *2
%Z <‘Tl ~n 7L —1> = 0,(1).

2
i=1 o 011

Since 67 and 0} are both bounded by Assumption H, by the similar arguments following
(A.18), we have that there exists a constant b such that

2

1 N 0.*2 0.*2 1 N 01*2 721 N > 20
op<1):2< I _1>:b2<; _1> > 2L Y (07 o),
N =~ 52 (7'1:2 N 0'1:2 Nz‘:l ! !

i=1

which gives

—_

1=

>
N

=o0,(1).
i=1

We further consider (A.16). By the definition of #, we have
1/2 1/2 © 1/2
* */ Tk A * * * */ Tk P *\ v * */ Tk —
= —N(F'F)Y2 4 (p— p*) SNA™(FYF)Y2 + ) (By — By) X, F* (FY'FY)
p=0 (A.21)
= A (F'F)Y2 15 +5;,  say.

10



Given the consistency of @, together with Lemma A.2, we can simplify (A.16) as

tr{ (%F*’F*) - [%A*’J@IA*} (%P*’F*) _1} = 0,(1).

Since the matrix in the trace operator is positive definite, we have
VoY L pwrdns] (L g L
(7F'F) A ma | (GFF) - =00,

implying & A" MA* = 0p(1) by Assumption B on F*. This completes the proof of Propo-
sition 5.1.

Appendix B: Detailed proofs for the convergence rates

From Appendices B to F, we drop the superscript “*” from the parameters of the un-
derlying true values for notational simplicity. The following lemmas are useful for the
subsequent analysis.

Lemma B.1 Let dnt be defined in (B.2) below. Then we have
NA "EldNTEL A = 0,(1).

Proor oF LEMMa B.1. By definition, dyT composes of 26 terms. We only choose the first,
tenth and thirteenth terms to prove. The proofs of the remaining terms are similar and
simpler.

Consider the first term, which is

R 1 N N
(0 —6)* =A% 121@ Y155 A = ZZ
N2T . 5=

T
)\/\ 2 Vit-1Yjt-1,

q>

which, by the boundedness of 67 by Assumption H, is bounded in norm by

LGRSt

. . 1/2
yit—ll/jt—l‘ ] .
i=1j=1 t

S
|
>,
%
(@)
Z|
Mz
==
1=

—_
~

i= 1

By Assumptions A-F, it is seen that

1 N
N L
i=1j

Z

1 T
‘f Y Vit
t=1

Il
—

In addition, we also have
1yt A==y 2AA] =t —AS A =[] =
N;&}H " =tr| g L gatii] = [ g =

Given the above three results, together with § — & = 0p(1) by Proposition 5.1, we have
that the first term is 0, (1).

11



Consider the tenth term, which is

The above expression is bounded in norm by
1 N

cl3E ARl (& S [ 12 E sl =0

by Assumptions B and C.
Consider the thirteenth term, which is

— NI A < CS A A = il = op(1),

where we have used the fact zeelzee < ClIy by the boundedness of ¢ (7 and (T by Assump-
tions C and H. This completes the proof. []

Proposition B.1 Under Assumptions A-H, we have

A

" i NPV T 1
vihys, D2V'Lyl H=V 1(NA’2661A> (?P’F) —0,(1),
where Xr is the diagonal matrix whose diagonal elements are the eigenvalues of Tlim 1F'F ar-
—00
ranged in a descending order.

Proor or ProrositioN B.1. The first order condition for A gives

1 & e e A e A
NT Z —0Y 1 —pY; — Xt,B) (Yt —0Yi 1 —pY; — Xt,B)/
t=1

By Y =8Y 1+ PYt + Xt,B + Afi + é:, we have
Vi =Y —pVi = Xip=—(0 -6V — (0—p)Vi —Xe(B—B) + Afi + ¢ (B.1)

where Y; = WyY;. Using the above expression, we can rewrite the preceding first order
condition as

T T

=1

. . 1 S . A 1 T
+(5—5)(p—p)mZYt_lYH(&—é)(p NTZYtY[1+ (6 =0T Z 1(B—p)Xi
t=1

1 T

1S A e g I S L
1 11,7, 1 &, 1 & 'y 1 &, 1 1_
+A [fP P}A + AT t;ftet + 57 t;etftA = Z[etet — Zeo] 4+ 15 — 72

12



—(6 - 5I\}szt i — (P NLZYfftA, NTZXt,B BfiN

T
A ; filG =8V~ %A ) filp—p)Vi - mAt;ﬂ(ﬁ -

t=1
. 1 L. T, 1 &, . .
—(5—5)mt;Yt71€t—(P—P)ﬁzytet—mzxt@—ﬁ)et

A

1 & . ., 1 & Ao
—ﬁtget@—@n—l—m;e@ p)Y{ — NTZetﬁ B)'X }Z A=AV.

Let dyr denote the expression in the bracket excluding the term g+AF FA’. Pre-multiplying
%IA\’ 3.1 on both sides of the preceding equation, together with the normalization condi-
tion %f\/ 1A = I, it follows that

%[\ s {%AF FA' + dNT} A =V. (B.3)
Given Lemma B.1, we have
[;]A S A} [%F’F} [%A’i;lf\} —V =0,(1). (B.4)

Since V is a diagonal matrix, the above equation implies that the eigenvalues of the
matrix 1 1 1
—F’F} [fA’iflA} [7
[T N et N

are equal to the counterparts of 1% plus a op(l) term by the fact that MM, and M,M;
have the same eigenvalues for any square matrix M; and M;. The last result of Proposi-

A/igel/\}

tion 5.1 is equivalent to

Tooe-1a11L are—1 1 1
[NAZEC HNAZ% A} SAELIA = 0,(1)
However
1 - 1 1 Y 62— g2 1 N 62— o2
—ASIA= —ANSIA— = L IAN=1— = L LA
N R P P B P Tl
Since
2 N /271 N 1/2
/ < - . 4 —
HN T T C[ Z; ctV] [N;MH or(1)

by the second result of Proposition 5.1 and Assumption B, we have

1 e 12171
A [
The above result, together with (B.4), gives the first two results of the proposition. The
third result is directly from the definition of H and the fact

L et Lgn 1 s o] V21 L 5oy ]2
|oAEea] < c[g X Ihr] [ L]

i=1"i

f\’i;el/\] LS

N 1/2
vl LIAMP] " @)
i=1

This completes the proof of Proposition B.1. []
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Lemma B.2 Under Assumptions A-H, we have

N
Z!Tnllz Op(ll = w|*), ZjlszzH2 Op(ll@ = w|?), NZHTzsII2 Op(ll@ = w|?),
i=1

where Tj1, Tip and T;3 are defined in (B.6) below.
Proor oF LEMMa B.2. Consider the first result. By definition, T;; consists of nigh terms.
We use Ijj, . .., lig to denote them. By the Cauchy-Schwarz inequality, we have

LY Tl < 9( X Il 4+ 1ol).

N5 - \NF

The proofs of these nigh terms are similar. We only choose the first one to prove. Notice

N 1 T 5
Z I1all? < G =) IDIP g z |7 Y AL g
< C(5—0)* D> [ i } [ 12 li}i ’ ! éyimyyu(z},

which is O, (||&@ — w||*). Then we have the first result.
Consider the second result. By definition, T;, consists of eight terms. We use
Iy, ..., ;g to denote them. By the Cauchy-Schwarz inequality, we have

1 Al 2 1 al 2 2
N L T2l <8( LIl o+ | sl?).

i=1

The proofs of these eight terms are similar. We only choose the first one to prove. Notice

1 2111112 RN N B IR 2 ~ 2
N Ll < 0 =D | GALSA [ o 7 X A [ ] = 00t = ol
i= i= t=

by (B.5) and Proposition B.1. So we obtain the second result.
The proof of the third result is similar as that of the second one. The details are
therefore omitted. [

Proposition B.2 Under Assumptions A-H,

1 N K\ 2 -1 ~ 2

N;H)\i—HAiH = (N2)+O (T7) +O0p(|l@ —w|?),

1 & 4 4 2 4
) NZH)\:‘—H%‘H = Op(N*) +O0p(T %) + Op([|@ — w]*).

i=1

Proor or ProrosiTioN B.2. Consider (a). Equation (B.2) can be rewritten as

Aj—HA =D [l AE] A} [% i ftelt} +D [Ni i $ole ft’] A (B.6)



NT & NT &
A1l & e e
+D57 1 AL X (B — B)ja(p— p)
t=1
and
le_—(é—(S)D[NA }?Zﬁyzt 1= (p— p)D[ A] th%t (B.8)
—D[lA'i—lA}li LB—B)— (G- &)D-1 Y AV
N ee Tt:1ftxlt ﬁ nB NT = t—1Jt
5 D Y AV, - DL Y AR 2
—(p—p) mt; e Yefthi— mt; e Xt(B—B)fiAi
and
T (66D ! i[\ﬁ etlj; (0 —p)D ! TA/ﬁ_ley (B.9)
3= —(0— NG tYit—1 — NG tYit .
’ NT & i NT &7 Fee 2
A 1 a A ./ A 1 d Al —1
—Dﬁt;/\ ert)(B—B) — ( )Dmt;/\zeyt_lelt

A1T_.. Al & e e A
- P Y DNi ;1 ZeelYteit - Dm ;A/Zeelxt(ﬁ - ﬁ)eit
There are eight terms on the right hand side of (B.6), we use I, ..., I;z to denote them.

By the Cauchy-Schwarz inequality,

1 & 1 Y
N YA — HAl]* < SN Y (Hall® + Tl + - - - + || Ls|?)
i1 iz1

By Lemma B.2, we have

1 N .
N Y (sll® + 1171 + 1isll?) = Op(ll@ — wlf?).

[y

15



So it suffices to examine the first five terms. Consider the first term, which is bounded
in norm by

"= 0,(17)

. 1 5 e 181 &
IR K7 X fe
1= =

by Proposition B.1 and (B.5). The second term can be written as

[% % i Aij‘ff eﬁ} Ai

i=1 j=1t=1"%j

2

7

—

which is bounded in norm by

013y X 1P] [y 1 e Wl [y X 3 5 ] = 0

by Proposition B.1 and Assumption B. Similarly the third term is bounded in norm by

c2f T &1 1 YY1 d 2 -
CIDI[ L g2 1P [z L X[ 7 Llewei — Eleue]|[| = 077,
j=1%j i=1j=1"'" t=1
The fourth term is bounded in norm by
A R 1
IIDHZWZ;ﬁHAiII clpj® 3ZAZII/\ I = 27’||DH2:OP<W)'
1= 1

where we use the fact that there exists a constant C large enough such that ¢; ‘o <
(e. 0; (714 < (). The last term is bounded in norm by

VTe;) r =0,(T2).

Mz

TinDnZ[;ﬁ; 1A [ 1

Summarizing all the results, we have (a).
Consider (b). By the inequality
1In+ In+ -+ Lgll* < 8 Inl|* + [ nl|* + - - - + || Lg%,

we have
1 4 41 4 4 4
o A= HAE < 84 S (Tl + Ml -+ 1B )
i=1 i=1

Now the proof proceeds similarly as (a). The first term is bounded in norm by

DI AL 3 | 5 3 e = 012
A Ze Al Ni; T;ftezt = O0,(T

The second term is bounded in norm by

IOl [ & ] [ & M) [ X 17 K il = 0,

16



The third term is bounded in norm by

aarl 1 1TE /181 2,2 -
cip)*[x Ll v X (5 1| Y leien — Elejen]| ) | =017
ERRTTIREDNEDaL); )]
The fourth term is
1NH1MU?4 AT R 0?4 1814 o?
=Y |=DAE §24—ZH—D(A1-—HA~)% +24—ZH—DHA1»A—Z .
N =N~ N ZIIN Vo7 N ZIIN o?

By the boundedness of &1 ,02, the first term is C||D||* 5 YN A — HAj||*, which is of
smaller order term than - YV, ||A — HA;||* and hence negligible. The second term is
O,(N™*) by the boundedness of 67,07 and A;. So the fourth term is O, (N~*). The fifth
term is bounded in norm by

o' [ L T

i=1"i i

N
(VTe] & L(VTe)* = 0,1

i:1

Mz

Il
—_

The last three terms can be proved to be O,(||@ — w||*) by the similar method as in
proving Lemma B.2. This proves (b). [

Lemma B.3 Let V be defined in (B.10) below. Under Assumptions A-H,
V=H" 0y - wl).

The proof of Lemma B.3 is similar as that of Lemma B.2. The details are therefore
omitted.

Proposition B.3 Under Assumptions A-H,
1 4e
AV JA—H Y =0,(N1) +0,(T V) +0,(||@ — wl|).

PROOF OF PROPOSITION B.3. Consider equation (B.2). Pre-multiplying NA’ 3! and post-
multiplying D = V~1, we have

PO 1 & oret cgrin oo 1 &, aiarn
I — [NA/ZEE A} H = o ;A’zw e fiNELAD + CAEIA t;fte;z IAD
Y AV Y SIAD + (0 — ok Y ALY VISSIAD
+( ) 2T Z e Lt—11t—1e + (P P) 2T Z e ttlt~ee
t=1 t=1
1 T N - A A A1 A A ~ 1 r A A1 A A
+TT ZA,Z ele(IB - ;B)(;B - ﬁ),X£Z€ 1AD + (5 - (S) (P - P) 2T ZA,Ze 1Yt71Yt/Ze 1AD
t=1 t=1
A ~ 1 T A A1 A A 1 T A A A1 A A
HE—0)(p— p) g Y ATV SIAD + (L Y NEIX(B - B - 0)Y, £ AD
=1 t=1
T T
L LS AR - B)(0— 0)VIESAD + Y AELY, (6 8)(B — BYX(SLIAD
2Tt:1 e t e N2T o ee Li— t~e



t=1 T t=1
1 TA/A 1 I AT =1 A 1 TA/A 1 S —1 A P
—(p —P)ﬁ N2 Vi fi N2y AD — 5 Y AELX(B - B fiNEL AD
t=1 t=1
1A/Afl 1 d I =1 AR lA/Afl 1 d IS —1 A
- [NA e A NT th(é 6)Yi 12X AD — [NA Lee A} NT th(P—P)YtZ e AD
=1 t=1
1 2eq 1 & INAS—1 A A I 1 & Are—1 1o —1 A
- [NA S A} 7 L AilB— BYXEAD - (6 - 0) 17 Y NS £ AD
t=1 t=1
1 d N 1 1 1 u 1 1
o1 o] A A e .12 A
_(p - P)m Z Z‘e Ytetz‘e AD — TT ZA/ZE Xf(ﬁ - ,B)e;z‘e AD
t=1 t=1
1 g ATe—1 I =1 AN 1 d Al —1 N 1 —1 A A
_TTzlAZe er(0 —8)Y{ 12, AD—WZAZE er(p — p) Y/, AD
1 ¢ AIS =15 5/ —1 AP 1 ¢ A1, (R 151§ =1 A 15
+—= Y AT e B AD — —— ) A'S e (B— B)' XiE, AD
Tt:l N Tt:l
Post-multiplying H~ on both sides,
[lA’ﬁflA} _pgv_o b i[\’fﬁlet FINSTADH™Y (B.10)
N ee NZT = ee ee
1 Al —1 1 /$—1 -1 1 d AIS—1, 5 —1A A1/
AN AT Z% frei2e ADH™Y — 5 Y AT eeS ADHY +V
= t=1
where
1 & et 1 1
& — IS —1 A ALy —
= — a7 LA KB~ B) (B~ B)XiE ADHY
t=1
2 1 d AlS—1 ! 1AV A 2 1 d AlS—1 IS —1 A Apg—1/
—(6—9) TTZAZE Y 1Y 2 'ADH (0 —p) WZAZQ Y Y/E, 'ADH
t=1 t=1
1 L A —1 ! 1 1/ 1 u A —1 A ! 1 1
— — — — — —1r
+W;AZ Je(0—0)Y] (X P ADHTY — TT;{A Y X (B—B)(6—98)Y 2 ADH
P )b Y S VS ADH Y — LY RIS, (5 8)(B — B XS ADH
pP—p ZTZ ee L1€+2ee NZTZ ee t—l( - )(AB_,B) t=ee
t=1 t=1
1 T"/Al" 3 I —1A Bg—1 5 1 TAAl' S —1 A7
“NZT Y ATLY(p—p) (B~ B)XiE ADHTY + (6 — 5)TT Y AR Y fiNE S ADHTY
t=1 t=1
. 1 Lo NP L NP
+(p p)m ZA/ZeelYff;A/ZeelADH 1/+ m ZA,Zeele(ﬁ _:B)ft/A/ZeelADH_ll
t=1 t=1
1 Al —1 1 d Q sl =1 A1 1 Als—1 1 /S —1 A -1
+[NA £.4] o Y A6 OV L ADH Y =N o7 Lo~ p)V/ELIADH
t=1 t=1
1 Al—1 1 d Il —1 -1 Q 1 d Al —1y IS 1A AU
n [NA S A] 7 L filB— B KIS ADHTY + (8= 8) o Y- AEiei£ L ADH
t=1 t=1
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1 & oajel o 1A A 1 & el ~ ~
—o L AE KB = B) (0 — p)ViEADH Y + 1 YO AE KB — Blety ADH Y
t=1 t=1
I 1 L A 1A 1 1 a Ae—1 IN—1 A ANrg—1/
—(6—-6)(p —p)TTt_ZlA YoV S YADHTY TT;AZ JLer(p—p) Y2t ADH
2 A 1 G ARl 1 AN -1, (A I —1A Ag—1
—(5—5>(P—P)TT;AZ Y1V ' ADH +mt;1\23 el(p — B)' Xixee ADH

Consider the second term on the right hand side of (B.10). Ignore H~V, this term is
bounded in norm by

[ X e [y S 1) [ L 5 o] 100 = 0pcr27

by Proposition B.1. So the second term is H! - OP(T*U 2). The third term can be proved
tobe H!. Op(T_l/ 2) similarly. Consider the fourth term. Ignore H~, this term can be

written as
1 & AIS =17, &1 A A 1 2red &—1 A 1 et o1
NZT ZA Y, [ere; — Zee]Xpe AD — WA 2o Leepe AD — —ZA 2. eex, AD.
=1
The first expression is bounded in norm by
1 1 4 1 & 1 & 291/2
X Il \fzelte,t E(eue)]| ] TIDI = 0p(T1/2).
[Nl._l P L |7 }

By the boundedness of &iz and (71.2, we have ﬁe_elZee < ClIy for some constant C. Then the
second expression is bounded by

1 a1 .

CopNEA=C5l = O(NT).

The last expression is easy to see O,(T'). Given the above results, we have that the
fourth term on the right hand side of (B.10) is H V- [0,(N~1) + O, (T~1/2)].

Now consider the expression on the right hand side of (B.10) again. The 2nd-4th
terms are H™ Y - [0,(N~1) + O,(T~1/2)] and the last term is H™ Y - O,(||& — w]|) by
Lemma B.3. So H~V dominates the remaining four terms. Given A2 1A is O,(1) by
(B.5), we have H™V = 0,(1). Given HV = O, (1), the second and third terms are now
0,(T~1/2); the fourth term is O,(N~1) + O, (T~1/2) and the last term is O, (||&@ — w]|).
This proves the proposition. [J
Lemma B.4 Under Assumptions A-H, we have

LS Wi~ HVRIR = 0, [ £ 3202 ~ 2] + 0,(N 1) + 0T 1) + 0yl — w]P)
T oVt TN T b b b '
= 1=

The above result, together with Proposition 5.1, implies

T T
Y Aft = B (g LAl ) H T+ 0p(1)

=) -

1S 2 e
= Ifi—H VP = 0p(1),
t=1
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Proor oF LEMMA B.4. By definition, we have

VS TAV TS (Y, gy T s
fr=(NEJA) AL (Y, — 61 — pYy — XiB) = NA,Zeel(Yt —0Yi1—pYr — XiB),

where the second equality is due to the normalization condition N~'A’S'A = I,. By
(B.1), the preceding equation can be written as

1 1 c 1 Y LAs-1x.(4
fim NELAf = SAEe = (8- 0) SN ELiy — (p— o) AT - CASIIX (B ).
The above equation can be alternatively rewritten as

A _ _ 1 Y- 1 AN A 1 A —14/

fi—H 1/ft = — [H v NA/Z‘eelA} fi+ NA,Zeel (5 0) N eelYt—l (B.11)

<P P) A Z‘eelyt - NA Zeelxt(ﬁ ,3)

We use Iy, I, . . ., II;5 to denote the five terms on the right hand side. By the Cauchy-
Schwarz inequality, we have

1& o 1<
7 e = HOVANR =52 ) (1 1”4+ 1Ml + - + [ s ).
t=1 t=1
The first term is bounded in norm by + Y/ || fil|?- [H™Y — AL A |, which is Op () +
O, (T™1) + Op(||@ — w||?) by Proposition B.3. The third term is bounded in norm by

-0 2y LI [ Yy ] =0, 2

0= L ] [7 K L] = Onlle = I,

The fourth and fifth terms can be proved to be O,(||&@ — w||?) similarly. Now consider
the second term. Since

Tase— Ly L Haje—nl z ZM ITEE S O
N ee Cf — Ni:1 @'12 it it lel 0_12 icit N e
by the Cauchy-Schwarz inequality, we have

T OB (RNl RN T 2 1L 1N 2
V| 2AS e ” —4- Hf (A — HAe: ) 4z HHi P % e

T ; H N ee Ct T ; N 1221 a_lz( i 1)€zt + T g N Zzzl 5’120'12 iCit

1 & 1Y 2 1T 4T ce g2

+ap LG gt +47 L |gA s
We use a,b,c,d to denote the four terms on the right hand side. Term a is bounded by
T ] _ 1

a5 ZHA AP [ 34

1: 1t=1

32) +O0p(T ) + Op([l@ — wlf)

by Proposition B.2. Term b, by the boundedness of 67,07 and A;, is bounded by

aclH|? [y i(frﬁ 7| [w7 ﬁi] -0,[x i(fr% il
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Term c is O,(N~') and term d is O,(T~1). So we have
1¢ 2 L& o o0 -1 -1 ~
7 L el = 0y Y07 = 2] +0u(N"1) + 0u(T ™) + Oy = wl).
t= iz
Summarizing all the results, we have prove the first part of the lemma. The second part

is the direct result of the first part. This completes the proof. [J

Lemma B.5 Let Uj; and Uj; be defined in (B.12) below. Under Assumptions A-H,

Z

N
Z [Unl? = Op(ll@ — wl*), NZ Ui = Op(ll@ — w]?).
i=1

i=1

The proof of Lemma B.5 is similar as that of Lemma B.2. The details are omitted.

Proposition B.4 Under Assumptions A-H,

T
=2 ft = HTV £l = Op(NTH) + Op(T7H) + Oy ([l — wl]?);
t=1

N 1
(67 — 07)* = Op(
=1

)+ Op(T )+ 0yl — w]).

1
T
®) +.

1

PrROOF OF PROPOSITION B.4. The first order condition for 07 gives

T
07 = % 21 {— (0= 0)ir—1— (p—p)iir — 2y (B—B) — (A —HA) i —AiH' (i —H V' f1) +éz‘tr-
=

The above equation can be written as

1 & 1 &, TN
TZ i—HAi)/T Y fréi —2A] L Z(ft H™Vf)é
t=1 t=1 t
. T . . g A
+2(Aj — HA)) = Ef (i —HVfi)HA + (A — HAi)'? Y fifi(Ai — HA))
t 1 t=1
T
+/\’H’ T Y (h—HYf)(fi—H Yfi)HA —& + Uy +Up (B.12)
t=1
where
Q 21 T .2 A 21 T .2 5 1 T . ./ 5
Ui = (0-9) T Y via+(—p) T Y in+ (B— .B)f Y xik(B—B)
t=1 t=1 t=1

“‘2(3_ 6)(p— Z]/zt 1ylt+2(‘5 5)(5 B) letylt 1+2(p—p) ;3 B) szt]/zt

=1

and

Up =2(6—6)~ Zyzt LA — HA) 4+2(0 — o) = Zyztft HA;)
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T

+2(B—B) sztft/\ HA;) +2(6 — 5);Zyu_1(ﬁ—H‘1’ft)’H7tz

tfl t=1
1.I T
= P07 L inCh — H VA HA +2(B ; —HVf)'H

1, . o1& A 1 &
—6)m ) Yit—ei — 2(p — p) Z Gireir —2(B = B)' = ) Xuseir-
= T3 T3
There are nine terms on the right hand side of (B.12). We use Ill;1, Illj5, . . ., Ill;y to denote
them. By the Cauchy-Schwarz inequality, we have

*Z <ol Z (|1 | + || M || + - - - + || Lo ||?).

The term & YN, (|| s |? + || Mo||?) is O, (|| — w)|?), which is implied by Lemma B.5. It
suffices to consider the first seven terms. The first term + Y/, || Il1 || is apparent to be
O,(T~1). Consider the second term. Since

. 1L . R 1 &, TN R _
(Ai = H)\i)/f Y freiw = (A — H)\i)/f Y (i —H Vfi)éw + (Ai — HA;)'H vl thezt/
=1 t=1
we have
1 N

2||1112||2<8—2HA HA)' 5 2<ff H e

A T 2
+sl Z H (A, — HA )Y H VL Y fei
N5 r=
The first term on right hand side is bounded in norm by
1L . IRTPRTC o IR A a2t &1 I \2q1/2
8|7 LI H VAR [ L Id-Bnl] R e (r o) |
which is 0,(5z) + 0p(T™!) + 0,([|@ — w||?) by Proposition B.2. The second term is

bounded in norm by

1

1:1 i=1 t=1

which is O, (T~2) + Op(%T_l) + 0, (||&@ — w||*) by Proposition B.2. So we have

1Y 1 - .
N L2l = 0n(5) +0(T™) + 0y = o),
i=
The third term is analyzed later and we consider the fourth term. By the Cauchy-Schwarz
inequality,

Ly 111; 2<4CH21N A — HA|? N CIES T HVf|?
N L Il < 4CIHIP [ 31 = HAP] [ S IAIR] [ K W - VAl

i=1
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which is also op(ﬁ) +0,(T71) + 0, (||@ — wl||*) by Proposition B.2 and Lemma B.4. The
fiftth term is bounded in norm by

LS = B [ 1A R) = 0,084 +0,(T72) + 0, (] *
[N L W= BXI [ AP = 0,(N ) +0,(T) + Oy - )

by Proposition B.2 and Lemma B.4. The sixth term is bounded in norm by
1 Y 15 . 2 1 I 2
IHI* | < Y I | = X 1A —H AP =0,(|= X Ifi—H AP ). (B13)
SE WL v <o ((LE v

The seventh term is apparent to be O,(T2). Now we consider the third term. Substitut-
ing (B.11) into the third term, we have

VPN 1,11 &
Ai H/ Z(ft H l,ff)eit = —/\;H, [H V- NA,ZeelA] f theit

t

FAH L Z NS e — (6 — SAH L

NT Z A Zee Yt 16it

NT
—(p—pNH L NT ZA S Yiey — A’H’ ZA 5 Xi(B— B)éir.
By the Cauchy-Schwarz inequality, we have

1 i )
~ 2 |~ <
Nz‘:l l

(B.14)

[H*“—%A’ *1A] Z ftezt

1 1 & 2 1 & . L 2
= — YAl +5- ) H (6 — YNH —— 2 A,
N i=1 NT t=1 “ N i=1 l NT t=1 “

1 N

N {

1 & onm e A 2
— Y AT (B - B)éi
NT &~ ee !

R |
(0— P)MH/W t; A,Zeelyteit

By Proposition B.3, the first term is Op(%T”) + 0, (T72) + 0,(||&@ — w||?). Using the
similar arguments in Lemma B.4, the last three terms can be proved to be Op(||@ — w|?).
Consider the second term. Notice that

>

N 0'.2— 2

1
Al H,NT ZA Sotey = —AH'H m Yy 20 Ajlejreir — E(ejeeir)]
j=1t=1 9
1 N T 1 1 N T
+/\;H/Hm 2 2 ;)\] e]telf — E(e]-telt + )\ H Ni Z Z [Ejteit — E(e]-te,-t)]
j=1t=1"%] j=1t=1
10?2, 10?2, ,1N1A__
+NA—2AZH (Ai — HAy) + NA—ZAZH HA; — A] HN]; TJZAjejei.
Again using the Cauchy-Schwarz inequality, we have
L& U st s P e el vollypg s 1s 2
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1 Y 1 &I 1 N 11 g2 A 2
oy L | MH’HNT];; 2 leen — E(epen)] | +6~ ) HNA:ZA:H/(/\Z ~H\)
1 N 1 N T 1 . 1 N 1 0_2
+6N z:Z; ’ /\;H/m ; ; @(7\]‘ HA])[ethzt E(e]tht H N ; HN%MH/HAZH
] ] i i
L T :
oLl L g et

The first term is bounded by
1 No1os 1Y ~
6C | HIP [ ZHAIIZ VTaP] [ L 2 1417 [Ng\ﬁéﬂ = 0,(T72).

The second term is O, (7). The third term is apparent to be 0, (557 ). The fourth term is
bounded in norm by

CIHIP [+ Y I~ HAy P [ LY

2
lejieir — E(ejteit)]‘ },
j=1 i=1j=1 t

| =
MH

I
—_

which is Op (52 T7!) + Op(T72) + 0,(||@ — w|[?). The fifth term is apparent to be O, (1)
by the boundedness of 67 and ¢?. The last term is bounded by

1N 1 NN T 2
ClHI* [ Y07 - 2] [xz L X | 7 Llewer — ECepen)]| ], (B15)
j=1 i=1j=1 t=1
which is O,(T7!) - O, [% Z}V:l(?sz - (7]-2)2] Summarizing all the results, we have that
the second term on the right hand side of (B.14) is O,(T~ 1) - O, [% Z].Iil(&].z — (7].2)2} +
Op(5z) + Op(T~2). This result, together with the results on the remaining four terms on

the right hand side of (B.14), gives
2 1 1 ul 2 2)\2 2
—zurms|| 7))+ 0,(T7) -0y [ 307 — 22| + 0y (@ — ],

Summarizing the results on -; YN )3, = YN g ||?, we have

Z| =

N T
172 o) = Oy(iga) + Ou(T )+ 0y([ LI = HAIF] ) + Opll — wlP),

=1

where we neglect the term O,(T~!) - O, [% Z}\Ll(frjz — (7]-2)2} since it is of smaller order

term than -; YN, (67 — 07)2. Substituting the result of Lemma B.4 into the above equa-
tion, we have

1 1 _ .
ﬁ;(vf—mz)zzop(ﬁ)JrOp(T D+ 0,p([|@ = w|?).
1=
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The above result, together with Lemma B.4, gives

1& s _ - X
7 2 e = HTVAI2 = 0p(NT) 4+ 0p(T™H) + Op ([l — w]?).
t=1
This completes the proof of Proposition B.4. []

Lemma B.6 Under Assumptions A-H,

@ §TfyM2;A=C%Q5HJ+OAT*»+%ww—wm;
T
) A g et~ ZSilA = Oy ) + Ol )
+0y(=—=) +0y(l0 — w]).

Proor orF LEMMaA B.6. Using the results in Propositions B.2 and (B.4), the proof of the
first result is similar as that of Lemma C.1(e) in the supplement of Bai and Li (2012).
Consider (b). Notice that

1 a1 , cgr 1T ENE 1 L1
ﬁA Z ce Z(Eses - de)ze A - X2 Z Z AZAz/\iAjT Z[Eisejs - E(el'se]'t)]
s=1 i=1j=1Y%Yj s=1
1 N N 1 1 T 1 N N 1 1 T
/ ! Y EY !/
= Hﬁzzazaz/\l)‘]f Y wijsH + 55 Y0 ) o Ai(Ay — HAY) T Y s
i=1j=1"i"j s=1 i=1j=1"i"]j s=1
1 NN q 1 T 1NN[7],2_(7],2 1T
EY / ! / !
+mZZ 5252 (i HAZ)/\J'? > wisH —Hi ) ) —rer g Aidjm ) wijsH
i=1j=1Y9iYj s=1 i—1j=1 99 0; s=1
1 Y202 1
-H— Z Y LN Y uH (B.16)
N2 i=1j=1 ‘71’2‘71‘2‘7]‘2 'TH

where u;j; = ejsejs — E(eisejt). The first term on the right hand side is O,( N \F) The
second term can be written as

. , T 1 N N 1 R , 1 T
HA) (A = HA)' 5 ) wijs + Hogs 10 ) —am3 il = HA)' ) wigs
i=1j=1 s=1 i=1j=1"i"Yj s=1
1 N N 52 o2 , 1 T
H Y Y T T - A Y
i=1j=1"i"i"j s=1
The first term of the above expression is bounded in norm by
1 T 241/2 1 1/2 1 .
[N;M mem;Zh;wﬁ} =0y T %) + 0y () sl — )
] =
by Proposition B.2. The second term is bounded in norm by
1N . ) 1 N T 1/2
C[N§||Aj_HAj||} 5 ZHNZ;Z o2 it 1"
j= i=1s
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whichis O,(N—3/2T-1/2) + op(ﬁ) +0p(||@ — wl|). The third term is bounded in norm
by

C[Nﬁ%

which is O, (1 T71/2) 4+ Op( \F)—l—op(Hw w||) by Propositions B.2 and B.4. So the sec-

ond term on the right hand side of (B.16) is O (N\/T) +0 (\/NT) +0 (T\/T) +0,(||@ —
w||). Consider the third term, which can be written as

S 9 S LY BP9 ) o ol | B
2

i=1j=1

N N 1 N N 52— g? 1T
Z Z Z ujjsH' — N2 ) A]2A2 ]2 (Ai - HAZ'))‘;‘* Y uijsH'
i=1j=1Y i=1j=1 9i Y 0; r=

1 N . ) 1/21 1 N 1 N T 1 , 241/2
ClHl [ X 1A= HAR] [ X 7 1 X Aps]| ]
i=1 i=1 j=1s=1"%j

which is O,(N~%2T-1/2) + O (fT) +0p(||& — w||). The second term of the above
expression is bounded in norm by

1

1 N . 1/2 N 1/2p 1 NN 1 T 2
ClH [ LI HAR] [ L@ - [ L |7 X s
i=1 j ]

which is Op(5T/?) 4+ O <Tf) + 0p(||@ — w||) by Propositions B.2 and B.4. So the
third term on the right hand side of (B.16) is O (Nf) +0 (\FT) +0 (Tf) +o0p(|l@ —
w||). Consider the fourth term, which can be written as

| XN (@R -0?) g ,
_Hﬁzz 52025202 Ak Z”IJSH
i=1j=1 i)
1 N N 6’2 2
+H— Y Y L ]/\N ):uljsH’ (B.17)
i=1j=1 Uz ] ]

The first term is bounded in norm by

}1/2

T
L tis

Sl

ClHP[ L Y02 - ?P] [L L X

i=1 i=1j

I\
—

which is O, (1 T~1/%) + Op(%ﬁ) +0,(||@ — w||). The second term is bounded in norm

by
el e -] [ X e B K e

which is O, (1 T7/?) + O (\FlT) 0p(||@ — w||). So the fourth term on the right hand

side of (B.16) is O,,(sz) +0 (%) + Op(%ﬁ) +0,(||@ — w]|). The fifth term can be
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proved to be O, (1, T~1/%) + O (\ﬁ )+ 0p(||@ — w]||) similarly as (B.17). Summarizing
all the results, we have

T
A 1
mA st s;(eseg — Tee) S A = op(m

This completes the proof of Lemma B.6. [

)+ Op( ) +0p(=—=) +op([|@ = wl).

1 1
VNT VT

Using the results in Lemma B.6, we can strengthen Proposition B.3. The strengthened
result is given in the following proposition.

Proposition B.5 Under Assumptions A-H,

1 . _ _ ~ .
(a) NAZ A=H YV =0,(N"Y+0,(T")+0,(]|& — wl|);

(b) HH' — 1, = Op(N"1) + Op(T 1) + Op([|@ — w]));

() HH = I, = Op(N™") + Op(T™") + Op(l|& — wl|).
PrOOF OF PrOPOSITION B. 5 The proof of (a) is similar as that of Proposition B.3, except
that when dealing with = Y, fie;£2!A and AL T Y [ere, — Zee] 2t A, we use

ee T
the more sharper convergence rates in Lemma B 6.
Consider (b). Notice that

which is equivalent to

—%(A — AH')S N A - AH') + ZANEH (A — AH)
l ~ A N 1 A
+ (A= AHYEA+H [NA'(Z*; ~IA|H + HH = 1. (B.18)

The first term on the left hand side is bounded in norm by

1 &1 . 1 & . 1 .
NZ;,;H)H—HMHZSCNZ;H)H—HMHZ: p(x2) +Op(T” D+ 0p(lle - w|?)
1= 1 1=

by Proposition B.2, where the first inequality is due to the boundedness of ¢?. The
second and third term are of the same magnitude. So it suffices to investigate one of
them. Consider the third term. Substituting (B.6) into it, we can rewrite the third term as

AT 1 A el 1 &, eqal Al l & el 1
D|LAE; 1A} [ﬁ ; fiel$ elA} +D {ﬁ t; A le f{} [NA/ZEQA}
DL AT Y el mat AT DLy LA oA ters A
+ 2 e T Z[Etet 66] e + 2 Z o2 /Y o) ee € ee
t=1 i=1"i

—_
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where T;;, Tj» and T3 are given in (B.7)-(B.9). The first and second terms of the preceding
expression are both O (\/%) + Op(T 1) 4+ 0, (||&@ — w]|) by (B.5) and Lemma B.6(a). The

third term is O (N\f) +0 (\FT) +0 (T\f) +0,(||@ — w||) by Lemma B.6(b). The
fourth term is bounded in norm by

UM N . ~ 18 ) R 1
\\D!\-mggl\m!! <C|D]- ﬁZl 2HA I° = fHDHrzOp(N ),
1= 1

where the first inequality is due to ¢; 2 < C0; ? by the boundedness of 67 and ¢2. The
fifth term is apparent to be O,(T~!). The last term is O,(||& — w||) which is implic-
itly given in Lemma B.2. Given these results, we have that the third term of (B.18) is
Op(N"1) +0,(T1) + Op(||@ — wl]). Consider the fourth term, which can be written as
02 —o? (0% -0
i 04 i /\z)\; 2

1 N
N& o

The second term of the above expression is bounded in norm by C+ YN (62 —0?)? =

Op(%) + O,(T™1) + Op(||&@ — wl||?) by Proposition B.4(b). The first term is Op(ﬁ) +
Op(T™1) + Op(||@ — w]|), which can be proved similarly as Lemma S.12 of Bai and Li
(2015) (see also the proof of Lemma E.1 below). Given all the results, we have proved
(b). Given (b), pre-multiplying H~! and post-multiplying H and noticing that H~! and
H are both O, (1), we have (c). This completes the proof. [J

2)2

~—L L ML

The following proposition, which can be viewed as the strengthened version of
Propositions B.2 and B.4, are useful for the subsequent analysis.

Proposition B.6 Under Assumptions A-H, we have

1 N . B T 2 1 B R
i~ HA = H(E'F) 'Y fiewl| = Opl(5) +Op(T ) + Op(l|@ — w]),
=1

N T
0) L[5~ = 2 L~ )] = Op(5) +Op(T2) + Oyl — ),
=0z

Oplg2) +O0p(T7%) + Op(ll0 = w|*).

PrOOF OF PrROPOSITION B.6. By the definition of H, we can rewrite (B.6) as

A; — HA; — H(F'F) 1the,t [ ZAZee etft}/\ —%DA sl

~ 1 & 1 xq 07
DN— Y AT erei — Eleren)] + NDN% +Ti + T+ Tis.
=1

oj

where T;;, Tj> and T3 are defined in (B.7)-(B.9). Using the symbols in Proposition B.2, we
use Ij1, Iip, . .., Ii7 to denote the seven terms on right hand side. By the Cauchy-schwarz
inequality, we have

2 1 N
~ HA\ ~ H(F'F) 1foeuH 730 L Tall Tl 4+ 11P)

=1
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Consider the first term, which is bounded by

. 1 & e 2 _ .
151 || g7 L ASZ e [ zwuu ) +0p(T72) 4 0p(|0 — )
t=1

by Lemma B.6(a). The second term is O, (T~2), which is shown in the proof of Proposi-
tion B.2. Consider the third term. Notice that

NT &N e lesein = Elerei)] = G — Aj)lejieir — E(ejreir)]
NT =1 ee NT]:lt:1 ]2 Jt*1 jt€i
1 M ZLo7—of 1 N T 4
_HWZZ 02072 Ajlejreir = Elegeei)] + WZZ?)‘J'[ejteit—E(ejteit)]~
j=1t=1 i ==y
So we have
1%’“ I? 312 . iil(;\ HA)| E( )]2
il i3l” <34 H— (A — et euei H
NS NZINT =5 ]2 PRI e
vag LfHyr 5 Ajlejei — Eejeq) |
Ni= Nszlt:l ]-2‘7]2
1 N 1 N T 5
+ 3N Z Hﬁ Z Z ﬁ/\l lejeeir — E(ejeeit)] H
i=1 j=1t=1"Yj

The first term is bounded by

1N 1 NN T 2
C [N Z;, A; — HAj|| } {ﬁ Z% Z% ‘? ;[eitejt — E(eitejt)]‘ },
= 1=17= =
which is Op(ﬁT_w + Op(T72) + 0p(||@ — w||?) by Proposition B.2. The second term is
bounded by
u 2 2211 1 N L 2
C[N Z(&i —0;) } [ﬁ Z ) ‘f Y leieji — E(eitejt)]‘ }

which is Op( T1) 4+ Op(T2) + 0p(||&@ — wl||*) by Proposition B.4. The third term is
O, (57)- Given these results, we have

Z

1 - .
§ Lol = Op(77) + Op(T72) 4 — ).

The fourth term is Op(ﬁ) and the remaining three terms are O, (||& — w||?), which are
shown in the proof of Proposition B.2. Summarizing all the results, we have (a).

The proof of result (b) is almost the same as that of Proposition B.4. The only differ-
ence is that when dealing with + Y., || i — H"V£]|? and & YN, (67 — 07)?, we use the
convergence rates given in Proposition B.4.
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Consider (c). By (B.11), we have

. 1 s ey, 1.
fe—H 1/ft_NA/Zeelet:_[H V——A ]ft (6 )N/\ZeelYt 1

R | | N
_(P - p)ﬁA/Zeelyt - NA,Zeelxt(ﬁ - :B>

By the Cauchy-Schwarz inequality, we have

—~

1 ~ _ 1 Ara . 2
T Ll H NA'ZeelefH

s4;i\uw % |
vsan sl E L esaxe - o
The first term is bounded by
4(z ZHftH N SAEIA| = 0p(5) + Op(T2) + 0yl — )

by Proposition B.5. The second term is bounded by
A Lyl 1 & &
c(d-9) [Nz 2N IP] 577 o L o] = Oull - wlP).
The third and fourth terms are O,(||& — w||?), which can be proved similarly as the
second term. Given the above results, we have (c).
This completes the proof of Proposition B.6. [
Appendix C: Analyzing the first order condition for

In this section, we give a detailed analysis on the first order condition for . We first
derive some results, which will be used in the subsequent analysis. By (3.1), we have

Yt GNOC + (S*GNYt 1 + GNXt,B + GNA ft + GNEt

with Gy = (Iy — p*Wy) !, which implies

Y=Y (8°GR)'GRa" + ) (6" GR)' GR X 1" + ) (6°GR)'GRA™fi ) + ) (6°GR)'GRer-t-
1=0 1=0 1=0 1=0

Given the above result, we can rewrite Y; = Y; — T~} Zstl Y; as

Vi = Y (0°GR) Gh X + Y (07 GR) GRAT fi + Y (8" GR) Giéi.
1=0 1=0 =0
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We can write Y; = WyY; as

Y, = s3 Z(&*GK,)ZXt,Z/S* + 5% Z(a*cfv)lf;:, + S5 Y _(6°Gy) e + Syer.
1=0 1=0 1=1

Define the following notations (see also the main text):

3 *(Oo* * oy * = %k *OA K £k . 1 T
B = 2(5 GN)' G X" + 2(5 Gy GLA i B; = By — o Z B,
=0 1=0 s=1
Bt = WNBt/ Qt — Z((S*G;])lcifeffl/ ]t — S}k\] Z((S*G}i])let,l,
=0 =1

Given the above notation, we have
Yi1=B1+Q1;  Yi=Bi+]i+ Snér
The following lemmas are useful for the subsequent analysis.
Lemma C.1 Let Sgy and Sg; be defined in (C.12). Under Assumptions A-H,
Sp1=Op(l@ —w[?),  Sp=o0p([|@ —w]).

The proof of Lemma C.1 is similar as that of Lemma B.2. See also the proof of Lemma
C.1 of Bai and Li (2014a) for more details.

Lemma C.2 Under Assumptions A-H,

1 T . 1 r ..
(a) m;X;Mthl = mt:ZlX;Mthl—*—op(l),
1 & 1 &,
(b) NT ;XtMYt =7 ;XtMYf + 0p(1);
(c) iix’ﬁ/fx = iiX’MX +0p(1)
NT =70 7 NT & o o
(d) — XiMY; 17ty = —= XiMY;s 1715t +0p(1);
NT t=1s=1 NT t=1s=1
1 ii.,a 1 ii,
(8) gy XtMYSTCSt—i XtMYsT[st—’_Op(l),'
NT t=1s=1 NT t=1s=1
1 L L.~ 1 & e
(f) NT Y ) XiMX g = NT Y Y XIMX 7t + 0p(1).
t=1s=1 t=1s=1

where 1ty = fL(F'F)~1f;.

The proof of Lemma C.2 is similar as (actually easier than) that of Lemma C.3. The
details are therefore omitted.
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Lemma C.3 Under Assumptions A-H,

1
(a) NT Z XIMA—— T Z felS AADHV £,

=op<N1ﬁ>+op<m>+op<m>+op<r|w—wn>;
T ~ T
(b) NlT;x;Me-tlesz;Met_A
+ Oy =) + Opl ) + Oy ;Twop(uw—wm;
1 T T o 1 T T
ﬁ t;s; X|Mésrts = NT ; ; X|Mes s —
+op<N1f>+op<ﬁ,>+op<m>+op<nw—wn>;
(d) I\}Ttixg Z\}Tzes 5. ADHf,
1 1 1 -
= 0y (2) + O(577) + Oplaz) + Oyl + 0y = o).

where A = §7 Li—1 X{Ze' A(F'F) 71 £y,

Proor oF LEMmma C.3. Consider (a). The left hand side can be written as
1 & 1 & PP
tr (== Y AXIMA) (= Y 2 A)DHTY .
[(or L AXiMA) (7 L felSalA) DH
Consider the term ﬁ Y ftX{ZT/IIA, which is equal to

1 A 1A A B
[NT thXt eelAHl - N2T thxézeelAA/ZeelAH/} HV

1 A A
i }: fiXiZe (A= AH)H™V + NT 2 ftxgze;/\[ ;[AZ (A—AH’)} HV.

The first term is bounded in norm by

:|1/2

7

el - [ ] [ £ 2

which is O,(N~1) + O,(T"1/2) + O,(||&@ — w||) by Proposition B.2. The second term is
bounded in norm by

C|!H‘1’H'[zlvi}z Al [zlvi”ﬁi—mw] i i” itx” T
Y5 ) LT £
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which is also O,(N~1) + Op(T~1/2) 4+ O,(||& — w||) by Proposition B.2. Given the above
result, we have

NT thXtMA Op(N™H) +0,(T72) + Op (| — w]). (C.1)

Given (C.1), together with Lemma B.6(a), we obtain (a).
Consider (b). The left hand side is equivalent to

1 & oe L
T Yo X e — T Y XiEJSAAS ey =1 — L, say
t=1 t=1

Consider I, which can be written as

1 N T (’7\- _ 0-2
i i _
Z Z 2 ltelt NT Z Z ~D D xiteit - 13 - 141 say.
z 1t= i=1t=1 Uz 0’1
Term I, can be written as
1 T 1 T 1 N T 1 T
2 2 28 |
Z 5202 [ T Z(eis —0; )] Xitejt + NT2 Z Z 5202 Z - xltelt
1:1 t=1 z i s=1 i=1t=1"i"i s=1

By the boundedness of 67 and ¢? and the Cauchy-Schwarz inequality, the first term is
bounded by

271/2

AR L n e ]

which is Op( ) Op( ) +0,(||@ — w||) by Proposition B.6(b). The second term can
be further wrltt as

1
N

NI\)

M=

1T
z fz

c[ L

I
—_

i

1 YL &1 1 Jo7—07 1

d (0
NT2 Z Z E Xiseit (e (72) N Z [Tz T2 Z Z xireit (e . (C.2)

i=1t=1s=1 i=1 t=1s=

The second term of (C.2) is bounded in norm by

[n et -] LG G (R -]

which is Op(7) + Op(%ﬁ) + 0p(||&@ — w]|). Consider the first term of (C.2), which can
be written as

1/2

1
NT

™=

T T 1 ) ) ) 1 N T . 3
ZE; [ezt € — 0;) — E[eit(eis—‘fi)]] +W22gxit]5(eit)-

t=1s=1

Il
—_

i

The first term of the above expression is O,( \FT) and the second term is 0 due to

Y1 %it = 0. So the first term of (C.2) is O (= p(NT ). Given these results, we have

1 = Oy(5-7=) + Opl ) + Oyl =) + oy = ).
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Now consider I, which can be written as

L = th WA = AH)A'S e th IAH (A — AH'Y'S e

N2T N2T

1 1 & .
N2T2Xt o A(HH—I)ANE e mngzeelAA’(z — e
t=1

1 o - B 1 o N
+577 Z X/ (= HAANE L + 2T Z XiZ A ANT ey =I5+ -+ -+ Ig,  say
t=1 t=1

First consider I7, which is k-dimensional vector. Its pth element (p = 1,2...,k) is equal
to

tr[(H,H (NzT ZZ 5% 27‘)‘/ Zelfxffl’ﬂ

where %j;;, is the pth element of x;. The expression in the second bracket is bounded in

norm by
241/2

1 N rl dN T iy

Cly L InP] |5 zlz) Y enty[] = 0T )
1= i= =

This result, together with Proposition B.5(c), gives

p(——=) + Op(

ijwop(uw—wm.

Consider Ig. It is the pth element is equal to

tr|H'(A — AH')'%. eelzetxtp e Al

N2T =

Ignore the trace operator, the expression can be written as

/\/H/ — H)\ letpe]t

1 N N 1 T P 1 T .
= =YY S MH [A]- — HA; — H(F'F) Zfse]-s} = L e
i=1j=1"i"j s=1 =1
1 N 1 / ! / —1 L 1 L .
+N2 Z Z Ml H(F'F) Zfsejsf intpejt = Iy + L2, say.
i=1j=1YiYj s=1 =1

Term I; is bounded in norm by

CHHH [ ZHA | } 2[ 12 %%’;iximeﬁﬂm

I
—
.
Il
—
-
Il
—_




which is O,( f) + OP(T\F) + 0p(||@ — w||) by Proposition B.6(a). Term I, can be
written as

181, 1,1 YN AL
N Z gAz‘H H[?F F] [ﬁ Z Z, Z, sz sXitplejrejs — E(ejte]’s)]}

i=1"i j=1t=1s=1"%]j

1 NN AJZ_(TJZ 1 1 T
DIy 2A;HH[TFF} [TZ szsxlfp Ejtejs — (ejf"js)]}

i—1j=1 Y9 0; =1 s—

1 NN (72 -
b DX a2 MHH(PD) 1Y oty

The first expression is bounded in norm by

inwﬁii

j=1t=1

1 1/2
— fs fsXitplejiejs — E(ejeejs)] ’H

clermizen | [ L]y

=z \

which is O, (—~ P (T ). The second expression is bounded in norm by

1 N 1/2
'y N2 22
e & [ S -]
1 N N 1 T T 241/2
[ 720 HT )3 Z fsirplejiejs — E(e]te]s)]H } ’
i=1j=1 t=1s=1
which is Op(57) + p(ﬁ) +0,(||@ — w||) by Proposition B.2. The last expression can
be written as
11y 1 ¢ AJ'Z_ 12 r 11§
- fszxifp 222 5202 M(F'F)” fzftxitp
t=1 i=1j=1 YiYj t=1
o2 _02 11 ,11 L
—*Z 5202 il thx,tp Nga?)‘ ft;ftxitp-
The first term of the above expression is Op (g7) + Op(T~2) + 0, ([|@ — w||) by Proposition

B.5. The second term is bounded in norm by

[ Zapem) '3 |- [ 207 -

i=1 "1 t=1 j=1

)‘>—\

whichis O, (g7) + O (7) +0y(||@ — w||) by Proposition B.4. The third term is bounded
in norm by

N [ S R M E WA
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which is also O, (x7) + Op(%ﬁ) + 0y(||@ — w||) by Proposition B.4. The last term is

1 &
— Y XIEJA(F'E) T 2 A
NT =71

Summarizing all the results, we have

1 1 1
Is = A+ Op(——=— + Oy + o0, (|0 — w
o = DOy om) + Oyl ) + Oyl o) 0y (10— o)
Consider Is.
1 NN T 1 s
N2T ZZ Z A2A2<A1 — HAj) (/\j H/\]>xzt€]t
i=1j=1t=1"i"j
2 2
1 i Y

The first expression is bounded in norm by
1 N 1/2 1 N 1/2 N N T . 2
|y LIh—mn] |5 -] )91 £ 9

which is Op(ﬁ’ffl/z) +0 (T\f) +0p(||@ — w||). The second expression is bounded in
norm by

1 N R 1/2 1 N
Cll - |5 LA - Al | Le? -

1/2
2] |:1 N N 1
i=1 j=1

T 2 1/2
Lz L]

i=1j=1 t=

which is O, (3 T~/?) + O (Tf) + 0, (||@ — w]||) by Propositions B.2 and B.4. The third
expression is bounded in norm by

cla] - [ ZHA HalP] % zHNT]z“z Lsanied]"”,

which is O,(N~%/2T~1/2) 4+ O, (\f ) 4+ 0p(||@ — w]]). So we have

1
VNT

Consider I, which can be written as

Is = O, ( )+ 0, (N32T71/2) + 0,( )+ o0p(l& — w])).

1
TVT

L N % i 1 |:0_2 ) l i(ez 02):|)\/)\'X‘ )
2T 4 525 j i T T )| vijXiteit
i=1j=1t=1"i ] ] s=1
1 N N §? 0' 1 I.T
L L e Y X sieej M

I
—_
~.
Il
—_

1]] t=1s=1
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1

[z L

A2 2 1 u 2 2 2
0 —of — 3 Lk~ )| ]

by
N

C [i]é ||)\i||2} 1/2 [% Y (67— (7].2)2} 1/2 [iz i i Hiz i i tieji (€l — 07)A]

=1 i=1j=1 t=1s=1

7

2} 1/2

—.

by

1 N N 1 N T T 1 2 1/2
Cl= Y A2 — — xpei (e — o?)A! ,
[N; ' ] [ ;HN 2};;;%{111 js = i }
which is Op(ﬁ)' So we have
Iy = Op(~— =) + Opl =) + Op( =) + 0y (& —
STUNVT T UNT Ty T
Consider Iy, which is equivalent to
1 N 0.2_0—2 1 N T 1
_NZ; A20—2 AZ [ﬁ gtzioaxlte]t/\]]
i= j=1E=17]

1 & 1/2 1 XN 1/2
cly e 5 ZH;T Z”Z e ]
i= j
which is O (\FT) + Op(N73/2T71/2) 4+ 0, (||& — w||). Summarizing all the results, we
have (b).

Consider (c). Treating Zstl es7tst = Y esfl(F'F)"'f; as a new ¢, the proof of (c) is
similar as that of (b). The details are therefore omitted.

Consider (d). The left hand side of (d) is a k-dimensional vector. It suffices to consider
its pth element.

1 & SR | T IS 1R ATr—1/ 1 & Sl x5l —1 A =1/
[ Y iy Mg ) el ADH | -7 L fiXi, Mz S AHTY.

where ti = (J'cltp, thp,...,th,,)/ is an N-dimensional vector. We use III; and IIl, to
denote the above two terms. We first consider the second term. Let ¢; = T~1/2 Zthl et

and e = (é1,6y,...,en)". The expression in the trace operator can be written as

I, =

T T
v N 1 P
oz 2 S XM = Ze S AHTY + s ) fiX, MAH™Y
t=1 t=1
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1 T ., A A a4 A
~ NP2 Y XM (L0 — Zeo)Lp) AHY = TlI3 + 1M, — III5,  say
t=1

Term Il = 0 by ]\7'[[\ = 0. Consider III3, which is equivalent to

1 &, N
N2T2 thxgpzeel [E? - Zee]zeelAH b

(C.3)
i z X0 ST ANE [ — B S A,
The first term (ignore H~Y) is
1 XM 1 1 & .
7 1 L 525 (7 1 fektan ) Ay 63 — E(@))
i=1j=1"i"j t=1
which can be written as
1 YN 1 1L .
2T Z Z A0 (f thxltp> (Aj — HA;) [eie; — E(eie;)]
i=1j=1"i j t=1
1 NN [7].2 — (7].2 1 T
“N2T > ) 525202 (f thxlfp)/\][elef E(eiej)|H
i=1j=1"i"j"]j t=1
1 XN 1 /1
2T 4 Z Z 5202 (f thxlfp>/\][el“3] E(eiej]H
i=1j=1"i"j t=1

which is O, (x7) + O (T) + 0, (||@ — w]|) by Proposition B.2(a). The second term is
bounded in norm by

CHHH% {;j}i((}f — %2)2]1/2 [% % H% ZT;fthitsz} 1/2 {iz %i "evfev]‘ - E(aa)’z} 1/2,

which is Op(57) + Op(%ﬁ) + 0p(||@ — w||) by Proposition B.4(b). The third term is
bounded in norm by

N T N N
1 /211 1 1 21/2
gy X > st v & |5 X vtee - @@ |
=177 t= i= j=1%]
which is O (f) Given the above results, we have that the first term of (C.3) is
O p( fT) ( ) + 0p(||@ — wl|). For the second term of (C.3), first notice that

/\

w7 T fiXipEe A Op(1). Therefore we only need to consider 5 A’ [6¢ — X |21 A,
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which, using the arguments in the proof of the first term, is also Op(ﬁ) + Op(T\l—ﬁ) +
0p(||@ — wl|). Given these results, we have

1
I = O, (———
> p(\/NT VT

Consider IIIs, which is equal to

i=1t=1 i (C4)

The first term of (C.4) (ignore H ~17) can be written as

>

2 2 1

N T : , N T 0.1 _U_i ) -
i L L T ity (s~ HA) + oy 1 O i A H
S5 o i=1t=1 i

By the boundedness of ¢7 and ¢?, term |07 *(6? — ¢?)| is uniformly bounded by some

constant C. Given this result, the first term is bounded in norm by

1711, 17211 X1
7l L I - HAP) [N;HTt . fii |

which is O,(35T1) + Op(N ™! \1F) + 0y (||&@ — wl|). By the boundedness of A; and 67,

the second term is bounded in norm by

1 1Y v2r1 Jot
R T ES s R ES ol 5 oy PN
T [NZ P } [Nl_zl T = fetey

i=1

}1/2

]1/2

which is also Op (5T~ !) 4+ Op(N~ 1T\1f) +0,(]|@ — w||). Given these two results, we

have the first term of (C.4) is Op(;zT 1) 4+ Op (N~ 1Tﬁ) + 0, (||@ — w]]). Consider the
second term. Notice that by the boundedness of @.12 and U'iz, there exists a constant C large
enough such that C - Iy — 2;61 (ﬁee — %) is positive definite. The second term of (C.4) is

bounded in norm by
52 _ 52
Ui — i

o

1 N
Nizl

NTHNT Eft tZ

< Ziuw o L[| Ly A s
N = 2" = XINTINT =/t

= CiHNT th i

which is O, (7). Summarizing the above results, we have

1
Ils = 0, (5) + 0p (I — ).
The results on III3 and Ill5 implies that
I = Op(—) + Op(——) + 0,0 — w]])
PTURUNT T Ty '
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Now consider III;, which can be written as

1 &L -1 & AU
tr| o D0 fiXi, Moo Y (esel — o) 25 ADH Y|
NT & NT & s
T ~ e :
+r [W t; fiX, ME oS, ADH 1’]

Consider the first term of (C.5). The expression in the trace operator (ignore DH)is
equal to

N2T2 thxgpz‘eel Z(eses Z@@)Z elA
t=1 s=1
1 J 1 T (C.6)
[ B[ Bt -mosas
Nthl pTee N2T e S; s .

By Lemma B.6(b), together with = Y[, ftXépﬁe_el/A\ = Op(1), the second term of (C.6)
is Op(ﬁﬁ) + Op(ﬁ> + Op(%ﬁ) +0,(||@ — w]|)). As for the first term. Since Xy, is
exogenous replacing A’ by %EZ 1 ft 'ip, the proof of the first term being O,( N f)

(\/»T) +0 (T\F) + 0, (||@ — w]|) is almost the same as that of the second one. So we
have

tr| ! i v i — Zo)2 ' ADH Y|
NT = : C.7)
:OP(W)+Op(m)+Op(ﬁ)+0p(||(«’t\7—w”)-

Consider the second term of (C.5), which can be written as
[ LY £X0 MADH V] — tr| o Y ] Fi(Sa — So) S ADH
NzT = t tp NZT & t tp ee ee e

The first term is 0 by MA = 0. For the second term, the expression in the trace operator
(ignore DH~V) is equivalent to

1 L .. A 1 & o a1 n A
NT Y fiXE e (Bee — Tee)Eoe A — BT Y fiXp R AN (B — Zee) B AL (C8)
t=1 —
The first term of (C.8) is equal to
1 N T 52_ 2 1 X T 22
o L L T i = 5 Y T i M
i=1t=1 z' i=1t=1 i
1 N Lo -o?
— i Aj — HA)'
+ ZTE,; 6'14 ftxltp( i 1)
The first term on right hand side is bounded in norm by
1 1Y 1211 Y1 & 211/2 1 1
C|IH|[= Y (02 —o?2] [~ H* H = 0y(~s )+ 0p(——
N[5 B =] R L7 KAt ] = o) + 0l 2 +onllle -l
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by Proposition B.4(b). The second term is bounded in norm by

sl i A —HAl) " [;]i B éﬁx”sz}l/z = 0yl +op(Nfﬁ) +op(llé—w])

by Proposition B.2. So the first term of (C.8) is O,(5z) + Op( \F) +0p(||&@ — w]|). Fur-
ther consider the second term of (C.8), which is equal to
1 Yo2—o?

7 Lot 1 T s A]

i

Notice that

N ,2

1 l
Z %o H

(A
i=1 i i=1 i i=1

2 1

2 _

By the boundedness of 67 and 02, we have |67 (62 — 0?)|> < C6? for some large constant

C. Given this result, the first term on the right hand side is bounded in norm by
171 1 4 /2 1 1 .
cslx 2 7 I 1% 2 A= Al = 0p() + Oyl )+ opllo =l
by Proposition B.2. The second term is bounded in norm by

1 1Y 2p1 N1 112 1 1
CollHl| % @7 =) | Al = 0p(55z) + 0=

[ F o] (1 £ ] <o oy
by Proposition B.4. Given the above results, together with ﬁ Yy, fttiﬁe_elf\ = 0,(1),
we have that the second term of (C.8) is O, (3 ) + Op(ﬁ) +0p(||@ — wl|). Summarizing
the above results, we have

) +op(flo = wl)

1 T oy A1 R ATr—1s 1 1 N
tr[NzTgfttiMZeeZee ADHY] =0 p(32) Ol z) + oo =@l (©9)

Given (C.7) and (C.9), together with (C.5), we have

1

1 = Oy

) +0p(7=) + Op( )+ ) +op([l@ = wl)).

1 O(L
N\F VNT PArVT

The above result, together with the result on III,, gives (d). [

ANALYZING THE FIRST ORDER CONDITION FOR f. The first order condition for f is
1 &oe
— Y XIM(Y; — i1 — pYi — Xif) = 0.
NT t; PM(Yr = 0Yiq — pY: — Xip)
By Y, =0Y,1 + th + X, B + Afi + é;, we can rewrite the above equation as

Ly iy (G 6) + [ Y xFv] (o
|7 L XY (6= 0)+ [ L XY (0 =)
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T ~
[ LX) (- ) = o L XIS + 1 1 Xt

By MA = 0, the above equation can be further written as
{ Z.,f.\.. }A [1 ZT:/A]
= Y XIMY: 1| (8- 6) + | o Y XIMY:| (5 - p) (C.10)
NT NT H

[NTZXtMXt} (B —B) _——th (A — AH')H- 1’f+NTZXtMet

However, the first order condition for A gives (which can also be derived from (B.2))

T
A—AH = —

1 & egnn . 1 & kA
1 -1 . -1
NT L 1etftA 3 AD+AWE fielSo, AD—|——T£ete;Ze AD
. 1 L. NP 1 K n 1 n A
+(6 =0 = Y ViV B AD + (0 — p)* o ) ViVIE'AD (C.11)
NT = NT =
1 L ] I —1 A A Iy A 1 L. 15 =1 A 19
o 2 Xe(B—B) (B — B) XiZee' AD + (0 = 0)(p — p) 5 D Vi1 Y{2,'AD
NT & NT &
+(6-8)(p—p NTZYth 12881AD+—ZXt[3 B)(6—6)Y{ 1 £,'AD
=1
T e 1 & &1 A
tg7 L Xe(B=B)(p— p)Y/EL'AD + = ) Yio1(0 = 6) (B — B)' XiZ ' AD
NT = NT =
1 T

NT =
1 ) $-14 (T 7161 A
NTA th 5 5)Yt 1Zee AD - ﬁAgft(P _p)YtZ e AD
1 d A I —1 A 1 L. /=1 A A
-~ Y fi(B—B)XiE'AD — (6 - (S)m Y YiaeE, AD
t=1 t=1
L s AD - LT X (5 plS AL
~(p—p) VielS AD — —= Y Xi(B — p)efE'AD
NT [H “ NT {5 ’
L ie (6 —0)Y £ 1AD L ie (0 —p)Y/EAD
NT t\C = t—1 - NT AV t
NT [H ’ NT 5 ’
b iet(ﬁ — B) X/ AD
t~ee
NT &

Substituting (C.11) into (C.10), we have
[ Z.,/.\.. }A [1i.,<\...} []T./.\..
— XiMYi_1|(0 —90) + | —= XiMY; | (6 —p) +
NT =7 NT =7
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- NT ZXtMA Zfs e ADHV, (C.12)

T
_LZZXW&@ ZXt ! Zes ¢S LADHTVf,

1 R
ZX{MY 17t + (0 — p)NTZZX;MYSHSt

T T
=1 f=1s—1

1 & & s s
57 2 2 XiMXs(B — B)7st + Sp1 + Spa.

1 L.~ . 1 L . . A A A
Spr = ——— Y X;M(S — 5)2ﬁ Y Yo Y 2 ADH TV,
s=1

L TN (A 2 1 L e —1 A Ary—1/
EXtM(P_p) WS;YSYSZ% DH fl‘
Y L Y KB B)(B— By XS ADH

Z t Z S(:B AB)(;B :B) s=ee ft
sS=

. 1 & o na
(6=0)(p—p)rgg L Vo1 ViZ ADS;
s=1

—_

|
-
="
ey

R A 1 Ko m mm
0—0)(p— P)m ), Y. Y, (S PADH VS,
s=1

,..
Il
—_

)

- g
1=
S
§>

X,(B— )3 — )V S ADH

9

Z
H
T
e
Z‘H
H
1=

B—B)(p—p)V.EADH Y,

.
- L
>
g:)
‘H
Mﬂ&
2
>

Z
H
A
Z
)\]
ii

Yo1(8=0)(p— B) XE,'ADHTVf,

—
1=
2%
i:)
Z‘ —
—
1=

|
-
- L
2
Ez)
2~
- L
o<

—
[9)

6 —p)(p— B)'XZe' ADH ™V

and
S :LiX’]\%LAif(S—é)Y/ 2_1ADH_1,f
P2 NT =1 FYNT = s s—1ee t
1 iX/M : AZT;f o) VS ADHVf,
FUNT = s( t
1

1L ) o
TNT ZX;MiA Zfs(ﬁ - ﬁ),X;ZeelADH 1/ft
—T M8 1 L I$—1A A1/

T t; XiM(0 = 6) 57 s; Y, el ADHY £,
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1 & .
+WZX; (p— NTZYSe S AADHV,
t=1
1 ¢ CHN | a 5 1 1
+m th NTZ S(IB ;B)e Zee ADH f
t=1 s=1
42 iX’]\A/I ! ie(& 5)Y_S-IADHV,
N1 VI~ 7+ s - 1 t
NT = NT ~ s—1%ee
1 < PECHN | 1 —1 1
+m ZXt ﬁ ZES(P _p)Ysz‘ee ADH ft
t=1 s=1
1 & yo 1 d 1e—1 1
7 b XMz Y es(B— B XS ADH TV f

ﬁ
Il
—_
w
Il
—_

[1iX’My _ly iX’MY ot (85— )
1 & 1 &L,
+[NT§1 MYt—mtzls;XtMYSnst}(p 0)
1 T ) 1 T T
+[Nthlng tzlzlx’MX st (B - B)
= S
1 T 1 T T
= N7 L XiMe; — Z Z Xi Me, st (C.13)
t=1 t =1
+0p(+3) + Op(—=) + Op(—) + Op( =) + 0 ([l — 0]])
p NZ N\/> \/>T p \/T p

This completes the whole derivation. [

Appendix D: Analyzing the first order condition for ¢

In this section, we give a detailed analysis on the first order condition for 4. The following
lemmas are useful for the subsequent analysis.

Lemma D.1 Let Ss51 and Ssp be defined in (D.6) below. Under Assumptions A-H,
851 = Op([l@ —wl?); S52 = 0p([l@ = wl]).
The proof of Lemma D.1 is similar as that of Lemma B.2. The details are omitted.

Lemma D.2 Under Assumptions A-H,

T T
1 S
( Z Yt 1MYt 1= m ZYtlflMthl + Op(].);
t=1

1
Ni
1 & 1 &

(b) NTZYt 1MY¢ N—Z MY, 4 0,(1);
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1 T 1 L L., ..
(C) —_— Z ZY{71MY5717T51§ = = 2 2 Yt/71MYs717Tst +OP(1);
NTt 1s=1 NT
1

1
@) 57 Z ZYt MY,y = NT

T
t=1s= s=1

HMH

The proof of this lemma is actually easier than that of Lemma D.3 below. The details are
therefore omitted.

Lemma D.3 Under Assumptions A-H,

1 T ~ 1 T NP
a) — Y Y;,lMAW Y felS ) ADH TV S,
t=1 =

NT ~
1 1 1 .
= OP(W) + Op(ﬁ) + OP(T\T) +op(ll@ —wl);
1 L., = 1 . 1 _
(b) ﬁt;w_lMet NTZB 1 Me; + NTZQt 1Xeler — A = £ (1717) 7Ly
1 1 .
+ Op(m) + OP(W) + Op(ﬁ) +o0p ([l — wll);

1 T 1 T T . . 1
— Mégg = —— B,_Mesmty — A* + ——tr|(F'F)"'F'LF
-1 s/lst = —1 s/lst —
@ JTL L% NT & & Nl }
1 1 1
+O0p(—=) + Op(—==) + Op(—=) + 0, (|&@ — w||);
r(g7) + O ) +Onl ) +op(lo = wl)

1 L. ~ 1 L A A oA
@) =Y Y/ \M— Y ¢S 'ADH TV,
NT & NT & e
1

) T Op(=—=) + Oy( )+ Op( ) +op([|@ — wl]).

1 1 1
NVT VNT VT

with
NT Z B 12661/\ F F) f
and L is defined in Theorem 5.2.

Proor oF LEMMA D.3. The proof of result (a) is similar as that of Lemma C.3(a). The
details are omitted. R

Consider (b). The left hand side is equal to ﬁZthl Y{_lMEt, which, by Y, =
B;_1 + Q;_1, can be further written as

1 T . -~ 1 T . -~ 1 T . -~
— Z Y, {Me; = — Z Bi_{Me; + —= Z Qi_1Met =1L, + I, say.
NT = NT = NT =

Notice that B;_1 is exogenous, the derivation for the first term is therefore almost the

same as that of Lemma C.3(b). So we have

3 1 1

1
L =—) B, _{Me;— AN +0p(——=) +Op(——) + Op(—=) + 0, (||@ — wl]]).
1= 7 L Bt V) + O )+ Onl )+ onlll =)
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Consider the second term, which can be written as
L ZT: Q/ 12_161? _ lQ/ 12_16_ o 1 i Q/ 12_1[\/’\\/2_151‘ + i
t— ee — ee t— ee ee
NT = N N2T = N
Ignore the signs of the above four terms, we use I3, Iy, Is and I to denote them. Consider

I3, which can be written as
N A2 0. 1

1 L ! -1 1 vi
m ; Qtflzee et — N E 0_20_2 T Z ta 1€it-

i=1

The second term of the above expression can be written as

1 ¢ 22 1 ~o2_ aly
Z [1 —fZ(eis—‘Ti )]fZQit—leit
i=1

=1

~~

o70; =
Ll L o7 Lo o1
i]é&?i—agf [;_ 2 _ o2 ];;Qit_leit.
The first term of (D.1) is bounded in norm by
clyxler-a- 1@ - T [ Ll K]

which is O (#) +0 (Tj—F) + 0, (||@ — w||) by Proposition B.6. The second term is
Op( \fT) The third term is bounded in norm by

1Y 1/2p1 N T 1/2

N 2(02 - 02)2] [ Z ’ Z € - ‘7 Z ta lezt’ :| ’
i=1 i=1' " s=1

which is O,(x7) + O (%) + 0,p(||@ — w||) by Proposition B.4. Summarizing all the

results, we have

. ) +0p(|0 — w]).

1 1
ZQt Zoler +0, (\/NT)JFOP(N—\/THO;:(W

. This term can be further

I
3NT

Consider I3, which is equivalent to NT2 Yiarl, Q.

written as
LYYy LYY Y
N 7[ta 16is — E(Qlt 1615)] + == ) (ta 1315) (D 2)
NT? 5 55 o7 NT? 5 /5= o?
1 N T (ATZ (72 1 N T (ATZ 2
N2 Z Z Z ZA 2 [ta 1€is (Qlt lels)] - W Z Z Z Z,\ (Qlt 1315)
0’ i=1t=1s=1 Ul l
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The first term of (D.2) is Op( The second term of (D.2) is

).

1 d = S 1 / /
3 2 | L rlGn (66w ]| = 7 (1p1n) gLy
t=1 ~s=0

with L defined in Theorem 5.2. The third term of (D.2) is bounded in norm by

el ot =t} L L e - v

which is Op(55) + O, (T)+OP(Hw w||). The last term is bounded in norm by

7

}1/2

1 N > 1/2 T T
cly p@ -] [§ Ll X G E@e)
which is O, (x7) + Op(—) +0p(||@ — wl|). Given the above result, we have

I = 1717) 15 L1 4 Op(———

) +0p(—=) +op(ll@ = wl]).

1 1
VNT TVT
Consider I5, which can be written as tr[ SAE YT eQl  E51A]L Using the argument
in proving Lemma B.6(b), we can show that the above term is Op( f) + Op( fT)

@) (T\F) +0,(||@ — w||). Consider Is. We first show that

NT<

1 &1 . 1 1
(i) 5 2 72 (At = HAi)ei = Op(——=) + Op(—==) + Op(——=) T op([l@ — wl]);
Nggzl T TPINVT VNT nﬁ ¢
1 & o7 —o? 1 1 1
i) — Aigi = 0p(——=) + Op(——=) + Op(——=) + op(||lw —w]|); (D.3
() 3 L 7z = Ol ) + On( ) + Ol ) Hapll = el (D)
1&1 1
iii) — ) —A8 =0,(——
( )lezlo_lz 1t P(m)
First consider result (i) of (D.3), which can be written as
1N 1 4 T 1 11 N T 1
— Y < |Ai—HA —H(F'F)'Y fiey|le;+ H( =F'F) —= — freqe
N 7 [~ HA Y fenles + H(7FF) 7 LY. afeas

H(pPE) L (3 )

The first term is bounded in norm by
1Y 291/2p1 N, 1172
5 " lwxal™

which is Op( \F) + Op( \F) + 0,(||& — wl||) by Proposition B.6. By Y,[_; fi = 0, the
second term is equivalent to

T
m—Hm—MFB”ZﬂM
t=1

-1 N
H(%F’F) ﬁ E Z ; = fileieis — E(eireis)] = Op(m)~



The third term is bounded in norm by

et |(57#) | [y et -] 5 S (7 )

7

}1/2

which is Op(57) + Op( f) +0,(||@ — w||) by Proposition B.2. Given the above result,
we obtain result (i) of (D.3). Consider result (ii) of (D.3). The left hand side can be written
as

18 1 7, o, 1d 1. 1 X1 s
N; Alza.iz [(Tl —0; _T;(ezs_az)})\iei"*’m;;&(ezt_gl ))\181
= = =1t=1"%i
1 N A2_0-21 T .
_NZ ZAz(le TZ(ezzs—(TZZ)Azez
i=1 i s=1

1Y ) » 1 a 2
C[N; Ui—al—?s;(eis—a ] [ ZH)\e,H ,
which is O,(—1=) + O,(=~=) + 0,(||& — w]||) by Proposition B.6. The second term can
P\ NVT p T\f P y P

be written as

1 X 1 2 2 1 Y& &1l 2 2 2 2
— —A;(e 0)es = —= —A;(e o’)e AE|(e o)e
N7 L L L gl = of)en NTZEEE[# (e = of)es = FAE(E Jeis

which is O, (T~1). The third term is bounded in norm by

which is O, () + O (77 f) +0,(||@ — w||) by Proposition B.4. Summarizing the above
results, we have (ii). Result (iii) is apparent. Notice that

1M1, 1N, o1 N N
N L0 = N L~ G — Hg X A+ Hig X Ao
j=1%j j=1Y] j=1 YjYj j=17]

11, 1
*ZT/\E :Op<7)+OP(T71)+OP(H@_WH)- (D4)
NZor VNT
Similarly, we can show that
LY 00,1 = Op(—m) + 0T ) + 0yl — w])
N &= 527ti=i—1 = Yp\ = P
N9 VNT



The above two results implies Is = O,(«7) + Op(T73) + 0,(||&@ — w]|). Summarizing all
the results on I3, . . ., I, we have

)+ Op( )+ Op(

1 & _ .
L=—Y Q % et — &1+ O0p(—— ) +op(|@ —wl]).
NT =~

1 1
\FT VNT VT

Given the results on [; and I, we have (b).
Consider (c). By Zthl ft = 0, the left hand side of (c) is equivalent to

1

T T ~
7,1_, Z Z YtlflMesT[st.
t=1s=1

Treating ZST:1 es7tst as vy, the analysis of (c) is very similar as that of result (b). The
detailed proof is therefore omitted.
Consider (d). By Y;_1 = B;_1 + Q;_1, the left hand side is equal to

1 &, = 1 1
WZB’ Zes IS LIADHTY £ + 57 ZQt 1M Zes IS LLADHTY £,
t=1

We use II; and II; to denote the above two expressions. Since B;_q is exogenous, the
derivation on II; is almost the same as that of Lemma C.3(d). So we have

1 1 1
I =0 + Oy —— )+ 0y(——=) + Oy (||w — w|]).
1= Op(32) + O(557) + Opl ) + Oyl =) + Oy~ wl)
Consider II;, which can be written as
tr[i ZT: £0, M XT: N 39) 3 1ADH—1’}
— ee
NT =~ =

1 & . I AN A L Ao
_tr[NthZ;ftQ;1M(Zee—ZeE)ZeelADH v - [NzTthQt \Mee$ ' ADHY .

We use II3, II; and II5 to denote the above three expressions. First consider II3, which is
equivalent to

; 1 NN 1T , ))1’1 T[' e ‘)]DHA/} (D5)
I.|:72 1221];1 Alza.]z <? ;ftQZt—l ]T ; €is€js €is€js .
1 T A qA 1 1 T AN A
_tr[<NT thQt_lZeelA) <N AT T Z(eseg - Zee)ZeelA> DH 1']},

The first expression of the first term of (D.5) in the trace operator (ignore DH~") can be
further written as

1 N N 1 1 T . /1 T

N L L 5252 (f thQitA) (Aj = HA))'= ) leisejs — E(eisejs)]
i=1j=1"iYj t=1 s=1
L E NG ,

RN Z Z ~D A - ftht 1 Z[ezse]s - ezse]'s)]H
N? i=1j=1 12]2]2<Tt 1 ) ]T
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1Y 1,17 1 oy 1
a7 LS Qi-1) [m];szl #A?[efsefs ~ Eesei)] | H

i=1"1i

The first term of the above expression is bounded in norm by
1 N1 T 291/211 N, 1/2 N N T 211/2
|y Xl tzlftQit_l\) R H = )Y |7 Llewejs — E(enel| ]
1= = 1=

which is O,(57) + Op(%ﬁ) + 0p(||@ — w||) by Proposition B.2. The second term is
bounded in norm by

1N 1T 21/21N,\2 22]/21NN1T 241/2
CHHH[N;HT;'ﬁQitlH } [N]Z;(Uf —(T]-) ] |:2izl]g‘Tszzl[eisejs_E(Eisejs)]’ } ,
whichis O, (g7) + O, (7)+op(||w w||) by Proposition B.4. The third term is bounded
in norm by

1 Y1 2t o1 &1, 1/2
CHHH[N;HT;ftQit_lu } [NEHNTJ;SZ; ?JZA][EZSE]S E(eisejs H } ’

which is O,( \/% ). Given the above result, we have that the first term of (D.5) is

@) ( 7) T O0p(5 T)+0p(Hc€J—wH). By Lemma B.6, the second term is Op(N_l/z%ﬁ)%—

@) (NT) + Op(T72) + 0p(||@ — w]|). Given these two results, we have

)+ ) +op([l@ = wl]).

1 1
Nt O

The derivations on II; and II5 are similar as those of
1y < M(S S —1 A 1) 1
tr {W ;ftxtpM(Zee - Zee)z‘; ADH™ i|

and ;
1 ol 55 —1 A g —1/
tr[W t;ftx Mee$ ' ADH }
which are given in Lemma C.3(d), we therefore omit the details. Given the results on II;

and II, we obtain (d). [J

ANALYZING THE FIRST ORDER CONDITION FOR 0. The first order condition for ¢ is
1 T SR e .. oA
NT t; Y, M(Y; —0Y: 1 — pYi — XiB) = 0.
By Yt = 5Yt,1 -+ th -+ Xt,B + Aft + ét, we have

[NT ZYf MY 1}<‘5 6)+ [NT ZYt 1MYt} (6 —p)
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1 T . -~ . ~ 1 T . -~ 1 T . -~
[ YRR (B B) = o VLB S+ Y e
[NT = } NT = NT =
Using the arguments in deriving (C.12), we have

[1 ZT;Yf MYi ] (6—6) + ! ZT:Y’ MYi| (5 - p) + | ! [T;Y' MX,] (B - p)
N — t—1 - T — t - T — t -
NT = 1 NT &1 NT &1

1 & = 1 & =01 & e qrn

= N7 Y Y, Mé — mZ)/,{,lMAm 2 fel2 ADHTY £, (D.6)

= t=1

T
»

t=1s

1
1 4 x> 1 i 2 i &1 A A 1

— Yt 1 Mésmtge — — Y M és6t . ADH™Vf;

" NT — NT = NT & ce

1

T 1 I.T
ZYt 1MYS 17Tt + (0 —p NTZZYt 1MY TTst

s t=1s=

1=

+(8- 0=

,..
I
—_

.

\ —-

Y Y 1MX (B — B)7tst + Ss1 + Seo.
1s=1

Z

ﬁ
Il

T

where 77 = f/(F'F)~1f; and

1 Lo, = os 1 e o) eqan
Sop = ——— Y Y/ M(6-0)>==Y Y, 1Y S ADHVf,
NT tzzl NT S; S ee
1 2 1 &

T ~
N7 Y Y M(p— Z Y. Y S LADH TV f,
t=1

1 T . ~ 1 T R . A R
e YV M o Y Xe(B - (B — B XIS ADH TV,
NT = NT = s<ee
1 & I AP . 1 L. e 1A A
“NT t; YEaMG=0)(p—p) g Z Y, 1 V/5'AD

1 Lo, = o. . 1
—WZY{—1M(5—5)(P NTZY 1% ADH™
t=

-~

ZX (B—B)(6—)Y. S ADH TV,

o~

Sy ZYS 1(6=0)(B— By X ADH

s:

1 & v
_ﬁt; -
NTZYt 1MNTZX (B—B)(p— p)VESADHTVf,
T
Z
=1
T
2 -

Bty X0 )(B — XL ADH
and

1 L. =~ 1 T A . 1A A1
Ss = NT ;yg,lMﬁAs;fs(a — Y. ADHVf,
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1

NT

LYY R AY (B X SADH Y,
NT = NT o

1 T . -~
ZYtI—lM

T
+— AY f(p—p)YIE'ADHTVf,
NT t=1 s=1

1 4. I 1 L. T
+—Y ¥V MO -6)—=) Y 1eE'ADHVf,
NT & NT & 7o se

1 T . = 1 r ~ &1 A A -1

+mt;Yt/—1MmS;Xs(ﬁ — Blesx,, ADH ™ fi
1 T'/ s 1 2 v S —1 APy

+—2Yt_1Mms;es(5—5) ! X ADHTV S

. ~ 1 L . A 1A A
Yt,fle Y es(p—p)VIE'ADH f,
s=1

1 T . ~ 1 T ~ ~ A A
=Y Y MY e(f—B)XESADH,
NT & NT & sTee

Using the results in Lemmas D.1, D.2 and D.3, together with the fact

1 / —14/ 1 I\—11/ _ 1 TI\—17T/7 T
(1) gLy + NTtr[(F F)~'F LF} = tl(FF)'PLF,

where F = (F,17), equation (D.6) can be simplified as

1 L. .. 1 LI . .
— Y Y MY —— ) ) Y MY, | (0—6)
[NT Z NT & & }
+| Loy vy iy, L iZY’ MY.7ea] (0 p)
NTT t—1 t N t—1 s/lst -
NT t=1 NT t=1s=1
HL Y - LY Y i (B B)
NTT t—1 t— N7 t—1 s/lst -
NT t=1 NT t=1s=1
L iB/ Me L iiB’ Meégts + iQ’ Y.le (D.7)
= t—1 t— N t—1 s/lst t—1 t
NT t= NT t=1s=1 NT t=1 “
L te[(FF) " FLE] 4+ Opl( ) + Op(—=) + Op(——) + Op( =) + 0y (10 — w]])
NT™ P\N2 ""NVT PNUNT P T T Oplljw — Wif).

This completes the whole analysis. [

Appendix E: Analyzing the first order condition for p

In this section, we give a detailed analysis on the first order condition for p. The following

lemmas are useful for the subsequent analysis.
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Lemma E.1 Under Assumptions A-H,

1&81 ., 1X1 1 & 1 &1
—) =07 —07)Sin==) — = ) —tr — Al
Nizzlo_iz(z ) ii,N NZO'ZZ T; [ 212210_12 ii,N/Vi 1}
1 & ~3/2 1 N
~(r+ V) xgp S - 2( ZSHN) +Op(N2) 4 Op(—=) + op(l& = wl)
i=1
Proor oF LEmma E.1. By (B.12), the left hand side can be written as
1 N 1 5 N T 1 N SiN A 1 T
— ) —(0f — == —2— (A — HA) =
Nz;aiz(gl NS N 5 7 T :1 l N; o} (Z d TgftEZt
1 al SzzN N 1 Loos 17 ¢ \/
250 )‘/H’ ):(ft H™V fi)éir +2 HA)'Z ) filfe = HV fi) HA,
i—1 Y t 1:1 1 t=1
1 (% Sin AR 1 {5 SiN o
= — = Ai—HAj) — — -
+Nl:21 0_12 (AZ HAZ) thzlftft( 1 Z) lezl 0,12 el
1 &S 3 R B 1 N g.. 1 NG,
+NX; ;szA/H/ X;(ft H 1/ft)(ft—H 1/)/H/\i+NZ; ;éNUi1+Ng ;tZNUzZ
1= 1 1= 1 1= 1

=IL+1I+- -+ 1, say.

Consider II>, which can be written as

2 1 T
N Z SllN Z —H™ ft Eit
Z t=1

(E.1)
2% Sux(h - HAH LY. fe
NT “Hii,N ™ t€it
Nz 1 1 T t=1
The first term of (E.1) can be written as
2 M1 R P R T
_*Z SzzN[ i H/\i_H(P F) Zfseis] *Z(ff_H ff)eit
N&Hof s=1 r=
2l N e LN R s
QSzz,Nzezsfs(F F)"'H Z(ft H ft)elt'
N =7 s=1 ri=
The first term is bounded in norm by
N /271 L, 1/2p 1 N T 1/2
—HA —H(FE)'Y fee =Y lfi—H VAP T G|
cly x| A ESs | rr L)

which is O,(N~%/2) 4+ O <T) + 0y(||&@ — w]|). Consider the second term, which can be
written as

1
—_ ZNZezsstP) L E(ft RIS A
i t

|
z|N
Mz

I
—_
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2 N 1 L 1! 11y 1 u Al —1
— — eisf(FF)""H — ) ANX, ; E.2
N ;1 0_12 zst:Z1 zsfs( ) NT ; ee CtEit ( )
+3ii Ze fI(F'F)~ HLAE e

Nl:1 0_12 zzNS_1 is)s N ee i

The first term of (E.2) is bounded in norm by

T

el Bl B [ G5 - el ] [ i

:| 1/2
t=1 i=1t=1

which is OF’(N%/T) + Op(%ﬁ) + 0p(||@ — w||) by Proposition B.6. The second term of
(E.2) can be written as

—2tr {(]1, ) Z A del NT E Z o Sii,N eztezs - E(eiteis)]fs/]

i=1s=
T

ot HGP/P) ( ;su N) o ; e, f;}. (E.3)

The expression of the first term in the trace operator (ignore <TF/ F)~'H’) can be written
as

(IR SR I B Sy U Sy SiNg, g
m ;]_Zl 7]2( /e ])e]t (NT le; Uiz [eltezs - (eltels)]fs)
S sp o EPAES o o )
-H— Aei| —= =~ leireis — E(eieis)] f.
A 7t t t
NT t=1j=1 ]'2‘7]'2 NT =3 aiz . e
1 T N 1 1 N T S N
+H = ) ) et 2o D 5 leireis — E(eieis) .
NTt—l] 1 7 (NTi—ls—l ‘712 . . s)

7

2} 1/2

1 & 1/2 N T 17201 Ly 1 NTIog.
C{N];H/\j_H/\sz} [mxze%t] {?ZHWZZ 11'2N[€it€is—E(eit€z‘s)]s/

which is O,(N3/2T-1/2) 4 Op(ﬁ) + 0,(||&@ — w||) by Proposition B.2. The second
term is bounded in norm by

1Y L, ooaer1 XL o2rn L1 LSy 121172
Al [ 507 7] (o7 L e 7L wr L X 5 s~ Bl £

which is O, (N~3/2T-1/2) + Op(ﬁ) +0p(||@ — w||) by Proposition B.4. The third term
is bounded in norm by

C [% té Hi}}é (lezAjethZ} 1/2 [% i H% % i Siz’,zN leireis — E(eireis)] f+

t=1 i—1s=1 Y
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which is O,( \/») Given the above result, we have that the first term of (E.3) is
@) (Nf) +0 (\/7T) + 0p(||&@ — w||). The second term of (E3) is O (N_l/z#) +
O0p(T72) + 0p(||&@ — w]||) by Lemma B.6. So the second term of (E.2) is Op( \F)
@) (fT) + O0,(T72) + 0, (||&@ — w]|). The last term of (E.2) is O (\/NT) + 0,(T75/2) +
0p(||@ — wl|) by (D.4). Summarizing all the results, we have that the first term of (E.1) is
0 (N-3/2) +0y(57) + 0 (| — o).

Consider the second term of (E.1), which can be written as

1 N1 R T Pl T
_ZN Z —5SiiN [A HA; — H(F'F) Zfseis} H T theit
i=17i s=1 =1
1 N T T 4
—257 Y)Y 5 Sineisei st
i=1t=1s5=1 Y

The first term of the above expression is bounded in norm by

1w x eyl

which is O (7) Op(%ﬁ) +0,(||@ — w||) by Proposition B.6. The second term can
be written as

1 N
CllH] |~

T
HA; —H(F'F)™' Y feeis
s=1

i=1

1 N T T 1 1 T
m E Z E 7 i,n[eiseir — E(eiseir) | 7ot — ﬁ Z Sii,NTTt,

t=1

M™M=

I
—_

which is O, ( \/7T) 2r <z YN, Siin- Given the above result, we have that the first term

of (E.1)is —2rgr XN, Siin + Op(N73/2) + Op(-1=) + 0,(||@ — w])). So we have

PATVT

I = — Zsuwo (N732) + 0,( )+ 0p(l& — w])).

1
NT TV T

Consider II3, which is equivalent to

1y TIPSR b By
~2tr|H'= ) (fi —H™Vfy) Z?Sii,Neit)\i'

=1 1:1 i

The expression in the trace operator can be further written as

Tt:l ee Nj:1 Uiz ii, NCit/\g

1 1 &1 .
+Hl NT Z A Z‘ee tN E ;Sii,Neit)\;~

i=1"1i

The first term is bounded in norm by

1T 1. . 211/271 T N
clalfz X [f-avr - ghtal T 7 X[ g X
t=1 ‘

sovear][]”
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which is O,(N~3/2) + 0 (\/7 ) 4+ 0,(]|@ — w||) by Proposition B.6. The second term can
be shown to be

N2 1 A+ Oy i) 4 Oyl i) + Ol ) oyl — )
similarly as term I in Lemma C.3(b). So we have

15 = —2tr[i iis'. /\'/\’} O, (N-2T-12) 4 0 (—L_

3 N2 = 0'1'2 i1, N/Vi‘\i p p T\/T

Consider II;, which can be written as

) +op([|@ — wl]).

tr [H(i] i ;izsii,N/\i(}\i - H)\i)') (% tiﬁ(ﬁ - Hl/ft)')} :

Using the arguments in proving Proposition B.5(b), the expression in the former bracket
is Op(N™1) + Op(T ') + Op(||&@ — w]|). The expression in the latter bracket is bounded
in norm by

1L . 21 Lo 3 1/2 3 B R
[ LA (5 A= HAIP] T = 0p(N2) 4 0,(T742) 4 0y (|0 — ]
t=1 t=1
by Proposition B.4. Given the above result, we have

Iy = O,(N732) + 0,( )+ op(l& — w])).

1
VT

Consider II5, which can be written as

1N15-- Ai — HA; HP/P—lT -llT” Ai — HA; HP’P—lT :
N;UTZ ”'N[ 1 i ( ) s;fsels} [Tgf }[ i i ( ) S_Elfsels]
1 N 1 P T 1 T .
+2N;U—izsﬁ,N H(F'F) szzlfse,-s} [T; fift] [ i = HA = H(P'F) ngsels]
181 & 1 &, o
+Nizlaizsii,N[H(P F) s;fseis} [Tgf H (F'F) ;fseis]-

The first term is bounded in norm by
1 211 &
¢l |7 L),

which is O ( 2) + Op(T2) + 0p(||&@ — w]||) by Proposition B.6. The second term is
bounded in norm by

N

T
HA; —H(F'F) ™'Y feeis
i=1 s=1

2]1/2[; 2}1/2 [;i IIﬁHZ],

T
' )_l Zfseis
s=1

C[l i |H(FR) ife'
Ni:l s=1 o
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which is Op(#) + Op(#) + 0, (||@ — w||) by Proposition B.6. The third term is ap-

parent to be iz YN | Sii N + Op( \/7T) Summarizing all the results we have

1

II: =r——
> VNT

ZSHNJrO( 5) + Op(—==) + Op( ) + Op( ) +op(ll@ = wl)).

1 1
N T N2 NVT TVT

Apparently,

1Y 1

Consider II7, which can be written as
N

tr[(i]Zsl,NM')[ ;i —H V(i - Hl’ft)’HH

=1

So it suffices to consider H'+ Y-, (fy — H™Vf;)(f — H™Vf;)'H. This term can be written
as

H’;é(ﬁ HVf— —AZeeet><ﬁ HVf — —AZeeet>H

T
+2H’% y (%A’i;elét) ( fo—HVf - %A’i;ﬁle’t)/H
t=1

+H’:1rt_21(i]f\2 )(;Ai o) H.

which is O,(5) 4+ Op(T2) + 0,(||& — wl|) by Proposition B.6. The second term is
bounded in norm by

20177 1 el ] [ 1 |

1/2
—HVf— 7/\’286 etH |
t=1

which is O,(N73/2) + Op(%ﬁ) + 0y (||@ — w||) by Proposition B.6. The third term can be
written as

N @'2 _ _ZA .
N2 Z L LAAH

i=1 1'

, 1

T
)\ )\ E €Zt€]f — ezte]t
t=1

1 1 .
—H'H-H AL eSS 'AH
N N2

The first term is O (N\F)—i—O <T\F)+OP | — w||) by Lemma B.6. The second term is

@) ( 2) +0, (N\F)—I—op(Hw wl]). The third term is &I, + O, (N2)+O (o) +0p(]|@0 —
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w||) by Proposition B.5. The last term is O,(x7) + Op(T7%) + 0,(||&@ — w||) by (D4).

Given the above results, we have

I = tr(l i is“N)\‘A’) +0,(N32)+0 (L
=T P TVT

For I, it is easy to see that Il = Op(||@ — w|?) = 0,(||&@ — w]|). Consider IIy, which

is equal to —(F X S% ) (p — p) +0,(|& — w]|). The derivation is similar as that of

Lemma B.2. The detaﬂs are therefore omitted. Summarizing all the results, we have
Lemma E.1. OJ

) +op(ll@ — wl]).

Lemma E.2 Under Assumptions A-H,

1 & = 1
WzégsgvMét ~tr(Sn) = NTZetS i et—l—rNTZS”N [NZAS i 1A}

#2( 3 13 55) 0 )+ Opliga) + Oyl + Oy ) + Oyl ) oyl

Proor oF LEMMA E.2. The left hand side is equal to

1 & . 1 1 & 1 =
[W Y elShEale — Ntr(sN)] — 7 L eSNE AR S e — @Sy Me = h— L~ I, say.
t=1 t=1
Consider I;, which is equivalent to

1 T e 4 1 N N T 1
Il = et(Ze — Zee )SNet + —= 2 2 2 ?Sij,N [eite]-t - E(eite]-t)] = 14 + 15, say.

LYy
Lh=—+x ~5—SijNeitejt
NT = i=5 o707
1 LY ELo2—o? 1 Y67 —o?
= _7222 ~ SZ]N[eltejt_E(elte]t)] - *Z%Sii,N =—ls—1I
NT =555 o707 N&H o

1L Sy L, 5 19 2
WZZZ 5202 [Ui -0 = T Z €js — 0; )} Sz]N[ezte]t_E(eltf?]t)]
i=1j=1t=1"i"i s=1
+ T L L 7252 {f G ‘71'2)} Sijnleirejr — E(eiejr)]-

1T 291/2r1 N1 I 241/2
67 — g7 — . Y (e —(Tiz)‘ ] {NXH Z[eitéit_E(eitéit)]’ }
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with é; = Zj]\il Sij,nejt, which is O, ( \F) + OP(T) + 0,(||&@ — w||) by Proposition B.6.
The second term of (E.4) can be written as

1Td 11 &, 502 1
N; ot [f s;(eis — 0 )} Sii,N Jﬂ%(m)-
The second term is bounded in norm by
1Y, v2r1 N1 & 1L N
C[N Z(‘Tz‘z - Uiz)z} [ﬁ Z ’ (f Z;(Ez‘zs - ‘71'2)) (f Zl[eiteit - E(eiteit)])‘ }
i=1 i=1 s= -

which is O, (x7) + Op(ﬁ) + 0,(]|@ — w||) by Proposition B.4. So we have

181 T 2
Nl;gf[ze —‘712)] 511N+O(\/»T)
1

1
+OP(N7\/T)+OP(T7\/T

Further consider I, which is equal to

) +op([l@ = wl])-

o2

1 N (07 —0?)? 1 o;
Z ) 11N+NZ l 11N—_18+I9
N&=  ofof
Consider the term Ig, which is equivalent to
1 1 1g 2 1Y 1 1 2
Is = — |:(’7‘—2_0—2_7 62—02:|S + — |:7 ez_g :|S
8 N;a_iza,iz i i Ts;( is z) ii,N N;AZZU'? Ts;( is ) i N
20 1 1, 5, 18, INEE 2
+N Z 52072 [ i 0~ f Z(Ezs 0; )} f Z(eis —0; )Sii,N' (ES)
i s=1 s=1

By the boundedness of ?71-2, (71-2 and S;; n, the first term on the right hand side is bounded
in norm by
oy

= O0p(55) + Op(T™) + Op([l& = w]|?)

2 _ 1 L 2 2
i fsg(eis_o—i)

by Proposition B.6. The second term of (E.5) can be written as

1 &1 T 2 12 —2r1 L, L2
N;af[ Ze —(7 :| ii,N — Z 12(7;11 [TZ(EZ'S—U_Z')] Sii,N' (E6)

N

s=1 i=1 1
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The second term of the above expression is bounded in norm by

1 N /271 N 1T2 ,|41/2
I 5ot - [y L sislr e -]
i=1 i=1 s=1

which is Op(g7) + O (T\F) + 0,(||@ — w||) by Proposition B.4. The third term of (E.5)
is bounded in norm by
N

[y xlt-t- 3 5t - o] [ Sotnlz p - df] "
1

i=1 s=1 i=1
which is O (Nf) +0 (T—ﬁ) + 0, (||@ — w||) by Proposition B.6. Summarizing all the
result, we have

Z\H

N T
=t 10;[; (6~ )] Sin + Ol ge) + Op ) + Oyl ) + oyl — ).

The term Iy is given in Lemma E.1. By the definitions of I; and I,...,Is, we have
I = Is — Ig + Is — Ig. Given the results on I5, I, Ig and Iy, we have

1 & 1 Y1 , 1
h = LSt Zeeet+tr[N22 ZSHNAA} (r+1)NTi;sﬁ,N+2( ZS”N)
1 1 1
+0y(553) + 0Oy )+ Op(==) + 0p ([l — wl). E7
(30 + Ol )+ Ol ) + O ) oyl =l (E7)

Now consider the term I, which can be written as
3 A 1 AlS 3 - ~ 1 ~ A A
tr WA Z (eteg - Zee)S;\]Z;elA} —tr [WA/Z;; (Zee - 253)53\72&1[\} +tr [ﬁA/S%{Zﬁ;lA '

Ignore the signs of the above three terms, we use Iyg, I1; and Ij; to denote them. Term
[0 can be written as

NP y
2}\1')\;'? Z[eiteit - E(eiteit)]r

which can be proved to be O (\/77,) + Op( f) + Op( f) +0p(||@ — w||) similarly as
Lemma B.6(b). To analyze I;; and I;», we first note that
1 N N 1 5
N;H; N = HA)| = 0pl(55) + Op(T ) + 0y ([l = w]?).
i= =
By Z}il |Sijn| < oo for all i, the proof of the above result is almost the same as that of

Proposition B.2(a) if we treating Zjlil Sijnejt as a new e;;. Now first consider I, which
can be written as

1
Iy = NzZAzA {Z%SUN (A —HA)| 5
vi )

I
q)‘ —_

B[ sy
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(72—02 L 1 L1 N 1 N
The first term is bounded in norm by
111 &1 . 1211 & & . 211/2
CnlnLaM] T [ E G s —a ]

which is Op () + Op( f) + 0,(||&@ — wl|). The second term is bounded in norm by

N 1/2 N N 291/2
CxglHl- [ X 13— Hail] [;;H;Sﬁ'NMH |

which is O, (gz) + Oy (
in norm by

5 \F) + 0y (|| — w||) by Proposition B.2. The third term is bounded

1/2

cLiH - [ Y0t -o2?] [+ ZHZSUN w1

which is also Op(5z) + Op(
%tr[ Zl 1 12)\ (Z] 151]NA)

ﬁ) +0p(]|@ — w||) by Proposition B.4. The last term is
+ O,(+) + O, (5r) by Proposition B.5. So we have

‘—‘Z

N2
1, 11 & al 1 1
I = —tr| — A . . _ - o — .
2 Ntr[Nizlo,?m(];sq,NA])}+op<N2>+op<Nﬁ>+op<nw w|)

Term I1; can be proved to be Op(52) + Op(
the above results, we have

ﬁﬁ) + OP(H(D B w”) Simﬂarly as I1p. Given

IR
Izztr[NgaizAi<]§Sl]N/\)] +0 (NZ) (E.8)
O o) +0p 55 ) + O3 7) + 0y~ )

NN
Notice &A% e = Op(ﬁ
new ¢, we can show in almost the same way that A’ 1Sye = O, ( F) +0 (Tf)

) + Op(%ﬁ) + 0, (||@ — wl|) by (D.4). If we treating Syé as a

op(HdJ w||). So the second term is O,(x7) + Op(75) + 0p([|@ — w||). The first term is
I Sin + Oy (\/71,)+0p(||w w||), which can be shown similarly as term I;. So we

have

1

N
b= p L Sin + Onl )+o( 5) +op(lld — wl). (E9)

\FT

Given the results (E.7), (E.8) and (E.9) and noticing that the left hand side of the lemma
is equal to I} — I — I3, we obtain Lemma E.2. [
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Lemma E.3 Under Assumptions A-H,

o tiietsNzee b7t = rNT anN +0, (\FT) +0, (T\F) + oyl — wl]).
where 1ty = fL(F'F)~Lf;.
Proor or LEMMA E.3. The left hand side is equivalent to
1

1 T T e,
Wt; ;et NZee 670t = N

T
Y e Syt e, (E.10)
s=1

1=

t

Il
—_

where we use the fact that Y, f; = 0. The right hand side of (E.10) can be written as

LYy Yy Al LT s
7 ~ eztezs - elteit)]ﬁst — V== %Su N+ T Szz N, (E.11)
NT H /5507 NT = o7 NT

where & = ijil Sijnejt- The first term of the preceding expression is equal to
Loyl Sy ;
tr {(TP/F> NTZ Y)Y S fifilenes — E(eiteit)]],
i=1t=1s=1"Yi
which can be written as

ir {(;m:) o YT s foflleueis - E(e'item]}

i=1t=1s=1"i

1 -1 1 N L T 52 42 . ;
_tr[<TF/F> NP L Ll 5 .zlfffsl[e”eis_E(eﬁe"t)@'

The first term is Op(ﬁ)‘

cll27el [ 0 - 2] [ X e 15 K ot~ Etauen]]

which is O, (77) + Oy (T\F)—i—op(Hw w||) by Proposition B.4. So the first term of (E.11)

The second term is bounded in norm by

1/2

L=

is Op(m) (7) +0,(||@ — w||). The second term of (E.11) is bounded in norm
by
111 & ., ,11/2 1 1 .
Co {N ;(Ui —03) } = Op(m) +OP(T7\/T) +0p([|@ — wl])

by Proposition B.4. Given the above result, we have Lemma E.3. [J
Lemma E.4 Let Sy and Sy be defined in (E.12). Under Assumptions A-H,
S1=0p(l@ —wl?),  Sp=0p([l&—w]).

The proof of Lemma E.4 is similar as that of Lemma B.2. See also the proof of Lemma
C.1 in Bai and Li (2014a) for more details.

62



Lemma E.5 Under Assumptions A-H,

1 T ~ T
(a) mt; MY, 21 MY, + 0,(1);
w>%:[wm] (SR +0p(1);
(c)iii M = LYY VY + 0, (1).
NT 5= NT H =

where Sy () = Wn(In — pWn) ! and p is some point between p and p.

The proof of Lemma E.5 is similar and actually easier than that of Lemma E.6 below. The
details are omitted.

Lemma E.6 Under Assumptions A-H,

1 L. = 1 L A 1A AL
(a) WZY[MAWZ feel2 LADHTY £,
t=1

s=1

1 1 1
=0,(—=)+0y(——) + 0, (—=) + 0, (|| — w|));
p(N\/T) ”(\/NT) ”(T\/T) p(l )
1 &o,a 1
(b) mtzzlthEt_Ntr(SN)
1 T"/" 1 T/—l 1 T/o/—l
= N7 ;BtMet + NT t;]tzee e + NT ;etSNZee e
1 1
—AO—m(leT)*H’TmT—ﬁ r[ASYT A+ = ZSHN
£ 0p(+5) + Op(—) + Op(—) + Opl( =) + 0 (@ — ] );
p Nz p Nf fT P T\/T p s
1 T T PN
=1s=1
—iiiB’Me Tt — A° —|——tr[(F F)"1F'KF]
— t s/ls
NT & = NT
£ 0p(—m) 4 Op(—aem) + Op( ) + 0y ([l — )
PANVT PVNT Pyt P ’
1 T . 1 T ~ A A
(d) =Y YIM— Y ¢S 'ADHVf,
NTt; NTS_Z1 sTsee
= Op(y) + Op(—m) 4 Op(—m) + Op (=) + 0y (| — ]
N2 NVT Or VNT Pryt’ F '
where
1

A° = NTZBdelA(PP )L —r—ZSuN
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Proor oF LEMMA E.6. The proof of result (a) is similar as that of Lemma C.3(a). The
proof of result (d) is similar as that of Lemma D.3(d). The details are therefore omitted.
Consider (b). By Y; = B; + J; + Snéy, the left hand side of (b) is equal to

1
NT Z Bl Ve, + T Z]tMet + NT ZetSNMet NN | =+ I+ 15 say.

Notice that B; is exogenous, so the first term can be proved to be

1 & 1 & oae g .
IIlszBgMet—ﬁgBQZee A(F'F)7Lf,
1 1
+0, —— ) +O0p(—=) +op(||w —wl|).
)+ Ol gz) + Oyl ) + 0yl = )
similarly as Lemma C.3(b). The second term can be proved to be
112_—Z]t ! —(1717) "17K1y
TNTUT T
+0p( ) 4+ Op() + Op( ) +0y (@ — wl)
VNT VNT T\F g ’

similarly as term I, in Lemma D.3(b). The third term is given in Lemma E.2. Summariz-
ing all the results, we have (b).
Consider (c). By Y; = B; + J; + Sné;, the left hand side of (c) is equal to

1 & 1
N7 Y Z B! Mesnst + 57 Z 2 ]tMesnst + N7 2 Z etSNMesnst
t=1s=1 =1

The first term is

1 && 40 L& 1
— B/ Mégrty = B Mégrts — BIX A(F'E)1f;
vk ey wr e
1 1
+0 +0 +O0p(—=) top(|l@w —w|)),
() + Ol ae) + Oyl =) + 0y = )
which can be proved similarly as Lemma C.3(c). The second term can be show as
1 ii o 1 ii . 1
— JiMésrtss = o JiMests + Op(——=)
NTSS" 7T NS5 77 PNVT
1 1
+0 +O0p(=—=) top(||@ — wl)).
The first expression is grtr[(F'F) " F'KF] + O, ( xfT) Given this, we have
LYY e = - t(FF) T FKE] 4 Oy ()
tIVIesTlst = p
NT =3 NT VNT
1 1
+0p(—==) + Op(—=) +op(||@ — w||).
(o) + Ol ) ol — wl)
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The third term is given in Lemma E.3. Given the above results, we have (c). U

ANALYZING THE FIRST ORDER CONDITION FOR p. The first order condition for p is
1 . e ea 1 1
—— Y VIM(Y; — 8Yi oy — Vi — X)) — N trl(Iv = pWn) "I Wa] = 0.

By Y, =0Y,1 + pr + Xt,B + Xtﬁ + Af; + é;, we can rewrite the above equation as

T e, N . A 1 " R
Y YiNtYia | (5= 0)+ [NTZYtMYt SISk @] (0 - p)
t=

Ly i) (- ) = - Y VIRIAG + o Y ¥Rl — St(Sw);
[NTE t t}(ﬁ_‘B)_NTE t ft+ﬁt; ¢ ef—ﬁr( N);

7

where p is some point between p and p. Using the similar method in deriving (C.12), the

above equation can be further written as
L 1 Some 1o
[ L MY (-0 + |5z ). VN k@)1 (6 —p)
1 14 1
[ 7 2 YtMXt} (B—B) = NT Z VI Meé; — NT ): YtMAm ): felSIADHV S,

1 T T o~ 1 T ~ 1
— T L L ViMesty — < Z Y/ M NT 2 ¢S ADH ™V, (E.12)

where 7ty = f/(F'F) 1, Y 1 =T 'Y, Y, 1,6 =T '] e and

1 & 1 L.
Sp=——=Y YIM(G-06)>2— Y Y, 1Y S TADHVf,
0 t 5 1
NT; NT Z S ee
1 I ../A s
-NT Y/M(p — ZYY ok v

1 & . 1

—WZY[M(é—é)(p— NTZY LYIEAADHTV,
t=1

1 < A 1 1 1

—WZYtM(‘S— )(p—p WZY 1Zee ADH™"f,
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T -~ T .. A 1A A
i LMY KB )(p — p) VIS ADH T,

—
1 T"/"\' J 4 5 IS —1 A A 1
Y VR Y Yo (6— 0) (B - prRESADH

1 L ~ 1 L . ~ e 1A A
Y VN Y V(o - p) (B - B XIS ADH S,
NT = NT = s
and
1 & TR d IS —1A DU
sz = NT ZYtMmAZfS(‘S_‘S)Ys—lz ¢ ADH™f;
t=1 s=1
L A PRt
+ﬁ ZYt mAZfS(P_p)YsZ‘ee ADH ft
t=1 s=1
1 & yoe 1 L n Iyt —1 =1
NT ZYtMmAZfS(ﬁ — B)' Xsx,, ADH™" f;
t=1 s=1
1 L IR 1 a ! 1 -1
+57 Y Y/M(6 - 5)ﬁ Y Yo 1el3 ' ADH VS,
t=1 s=1
1 & AT (A 1 ¢ IS =1 A PAry—1/
+m2YtM(P—P)ﬁEYs€sZeADH Ji
t=1 s=1
1 L ’ 1 L h IS—1A D71/
+m2Yt WEXS(,B—[%)ESZEADH Ji
t=1 s=1
1 L RS 1 L I s =1A A1l
+WZYtMmZ es(6—0)Y. L ADHTVf,
t=1 s=1
1 & oy 1 d I —1 1
TNT )R WZE(P )Y ADH™Vf;
t=1 s=1
1 T ) 1 L 5 InIS—1 A ALr—1/
TNT ZYtMﬁ ) es(B—B) X, ADHV

N
I
—_
w
Il
—_

Using the results in Lemmas E.4, E.5 and E.6, the above equation can be simplified as

1 &y 1 LI, X
[mgthYfl—NTtZ%Zithy 7] (8- 0)
= ~ &
+ [m;YtMYt_m;;YtMysﬂst—f—N NZSZZN}
L 1 L& .
+ [r L Vbt = o 1 Y W] (B ) 1)

1
L / co —1 1 1 1
2 et NZCE 7tr[A S ZEE A] mtr[P’”K]
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1 1 1 1
+0, +O0p(—==) + Op(—=
N O ) O ) O
This completes the analysis. [

+ 0y ( ) +op(ll@ = wl)).

Appendix F: Proof of Theorem 5.2 and Corollary 5.1

Proor oF THEOREM 5.2. By (D.7), (E.13) and (C.13) and noticing that O, ( \/7T) +0 (N f)

is dominated by O,(N—3/2) + Op(%ﬁ), as well as the terms of the order o,(||@ — w||)
are negligible since they are dominated by the terms on the left hand sides of the three
equations, we have

W—w-+Db

L1 Zt 1 B Met Zt 1TZST:1TB£MES7'{§t + Zthl ],{TZellet +7
=D NT Zt 1B 1Met 2t=1 TZs=1 IBZ._1M35 Tost + Yim1 Qi 120 €t
Y XtMel‘ Y Yl X[ Mesmy

+0,(N*?)+ 0, (T\f)

Theorem 5.2 is a direct result of the above expression. This completes the proof of
Theorem 5.2. [J

Now we show the corollary 5.1. Notice that if we can show that ID~1/2¢ 4N (0,1)
conditional on the realizations of A;, f; and x;; for every i and ¢, it would follow that

D-1/2¢ 4N (0, I) unconditionally. In this sense, it is no loss of generality to assume that
Ai, fr and xj; are nonrandom. The following lemmas are useful for our analysis.

Lemma F1 Under Assumptions A-G,

I 1 L
JiMy=—=)_ JiZec Tt +0p(1),
NT = ce

SO
SN—r S~—
1= ID1-

iSNM(Br + Ji) = 0p(1),

.*
Il
—_

. S 1 _
é}S\ MSyér = gt (Zee NZee SN) +0,(1),

H.
Il
—_

1=
1=

JiMJsmst = 0,(1),

w,.
Il
A
v
Il
—

1=
1=

- 3~ 5~ 3~ 3~ 3~
) -
ii

=)
1=
1=

[
L
w
i
L

Proor oF LEMMA E1. Consider (a). The left hand side is equal to

1 & 1 & 1.
7 2 T et s Y B ANEL — T M. (E1)
T = ee NZT = ee ee N
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For the second term, it’s expectation is equal to

1 n .
tr[WEA/Z;EUth;A} = A <5Nl§ (6GN)'Zee(3GH)'Sy ) Zoc A

by the definition of J;. Since

IEGDI = [[Sv 1o (0GN) Zee (0GR S (F2)
I=1
< (15wl - ISl - [Zeells | o101+ Gl | 101 Gn )],
I=1 I=1

which is bounded by some constant C by Assumption F, there exists a C > 0, such that

T /258 Y (6GN) Eee (0GR ) Sy Ze!/? < Cly.
=1

So we have

1 - Iy —1 Ny —1 . 1
tr{NZTi;A T E()ER A = O(x):

By the Markov’s inequality, we have that the second term of (F1) is O,(N~!). Consider
the third term. Notice that

1

[ R
0< GIMJ < T2 < CLTT=0,(5).

where the last result is due to E(N~!J']) = O(T~!), which can be proved similarly as
the second term with (F.2). Given these two results, we have (a).

Consider (b). The left hand side of (b) is equal to ﬁ ZtT:1 e} Q\]M (Bt + J;), which can
be written as

1 &, e 1S, 1 &, e
—— Y eiSyMBy + — Y eiSyMJ; — — Y @SyM]
NT t=1 NT t=1 Ntzl

Notice that

1 I PR 1 T../.. s 1 T"/“ 1
E| o L sk = xara D BINS\ESNB: < Ciapa Y BB = O(ig7).

where the inequality is due to the boundedness of || MSNZeSiM||1 and | MSNZee SAM || o-
So the first term is O F) Similarly,

1

1 T//.. 1 172 - 2l
E{NTt_ZletSNM]t} Wtr[z‘ SNME(J1]) MSNE,/ } _O(ﬁ)

where the last equality is due to (F.2). Then the second term is Op(ﬁ). The last term

is Op(Tfl) which can be easily proved. Then we have (b).
Consider (c). The left hand side is equal to

1 u /gl v—1 1 L /el v—1 Iy —1 1 1l A
— E etSNZ Sner — —— E etSNZ ANZ *Sney — —¢ SNMSNE_.
N1 = e N2T = e e N
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For the first term, we see that

T

1 . 1 .
E[m;e;s&ze;s]ﬂet} = tr(ZaSUEL SN):

In addition, we also have that

2 —
var |:NT Z etSNZeelsNet} = Wtr[(z‘wsg\lzeelsN)Z]

1 x —304 _ _
N2T : A tr[(ZeeSNZie' SN) © (ZeeSNZie ' SN)] = O(=2)-

So we have ;
1 ol v—1 1 I v—1
pg— €t NZ‘ SNet — *tr(ZggSNZ SN) + Op(
NT tzzl ee N ee
Consider the second term, which is bounded in norm by

1

L 1
;H Z??Aelt|| (N)’

where ¢; = Zé\jzl Sio N€ot- Consider the third term. Similarly, there is a constant C such
that SjyMSy < C - Iy. Given this, we have 3,¢'Sj,MSye < Cx'e = O,(T~1). Given these
three results, we have (c).

Consider (d). The left hand side can be written as

i F'F)™Y2 fiei e fL(F'F) /2]

HMH

«[yr

| /\

1 T T
Ctr[igp L L (FF) 2 fctesfUFF) 7] = O,

Then (d) follows.

Result (e) can be proved similarly as result (b) and result (f) can be proved similarly
as result (d). The details are therefore omitted. This completes the proof of Lemma F.1.
O

Lemma E2 Let A;_; be defined in (F.4) below and Aj;_q its i-th element. Under Assumptions
A-F, we have E(|Aj_1]*7¢) < C for some ¢ > 0 for all i, .

Proor oF LEMMA F2. Let v; be the ith column of the N-dimensional identity matrix. By
definition, we have

T
g . - . e RV
Ait—1 =11BiMv; — iy Z st BMv; + 11 ;2 vi + 12B;_{ Mv;
s=1

T T
) - o e o . -
—ip ) Bl Mv; 4+ i,Q; X'V +i3X{Mv; — i3 ) s X Mv;
s=1 s=1
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Then it follows that

T
| Aje1 |7 < 8 [ ByMv; |21 + [ig Y g BUMV; 21 + [ {2 vi 21 + [iaB)_ M [+
s=1

T T
—Hiz Z ﬂstB;_lMVi|2+C + ’izQ;_lzf;lvilerc + ‘iéX;MVZ"ZJFC + ‘lg Z ﬂstX;MV,“2+C .
s=1 s=1
(F3)

So it suffices to show that the expectations of the above eight terms on right hand side
are bounded. Since the proofs for different i; (j = 1,2,3) are similar, we only choose the
three terms involving i; to prove. Consider the first term. If x;; and f; are bounded fixed
values, the proof is easy. We only consider the random case. Notice that

E(|BiNvi[*+) = E[(ViMB,B{Mv,) ] < E[(viZ, BBz, vi) 4]
< CE[(v/BiBjvi)"#] < CE[|vBi[**] = CE[| B ).

Let G; = (6Gy)'Gy and éij/l be its (i,j)th element. By Assumption F, it is easy to verify
that Y17 Z}il Gyji| < Cforalliand Y2 Y.V, |Gyjy| < C for all j. Now, by definition,

=

)

p=11=0j

ﬁp z;lx]tp + Z Z GZ]Z)L]ff I

Il
—_

So we have
) ) k oo N _ 24c ) o N iy 24c
(B < 27E[| L Y 3 AiGirti| | +27E[[ L L G|
p=11=0j=1 1=0 j=1

It suffices to show that the two terms on right hand side are bounded. The proofs of the
two terms are similar. So we only choose the first term to prove. Notice that

k o k o "
)ZZ ww!ZZZ%%HWI
: : p: :

Let Gi:Z Ao XN 1By Ul’ Then we have

2+4c

—_

k oo N .
S = L2 ) 1BGil- [ %jep €

p=11=0j=1

k oo N B
Z EZ 1BpGiji| - |%jep]
p=11=0 j=1

by the Jensen’s inequality. Then it follows that

24-c

k o N _
[ZZZ%%WWM
r=1

k o N _
Y Y IBGial - i
p=1

=11=0j=1 1=0j=1
Thus,
k o N _ 24 “l k o N "
EH ZZZﬁPGlﬂx]W‘ §G1+CZZZ|,B 1]l|E(|x]tp| +C) SCGZ—H
p=11=0j=1 p=11=0j=1



which is bounded since Yi°, Zj]il |Gij1| < C. This completes the proof for the first term
on the right hand side of (E.3). By treating Zstl 715+ Bs as a new B, the proof of the second
term is similar as the first term. As regard the third term, by the similar arguments in
the proof of the first term, we can show that

E(|JiZe vil**€) < CE(|viJi[**).

The remaining proof is therefore similar as that of the first term by treating e;_; as a new
X;_1B. So we have proved that the terms involving i; in (F.3) are bounded. The same
arguments also apply to the terms involving i> and iz. This completes the proof. [

Proor orF COROLLARY 5.1. As defined in Theorem 5.2,

1 25:1 BgMef_ - ZtT:lTZstngimesﬁ§t + ZtT:1 IZTZEelet +1
¢ = UNT Y1 B,{_lMet = Li=1 Xis=1 B;__lMesﬂst + Y QZter
Zthl Xi{Me; — Zthl Zs.T:1 XiMesTtss

We use the Cramér-Wold device to show that § converges in distribution to a multivariate
normal distribution. For any nonrandom (k + 2)-dimensional vector ¢ = (i, i,1})’,
where i3 is k-dimension, Consider ¢'¢, which is equal to

1 T .. rrooo T T
0 =1 B} Me; — g BiMe; + Y JiZ e 4+ Y el ST e
1 T .. rr .. T
+ iz Z B;flMEt — Z Z 7T5fB271M€t + Z Q;,lze_elet
t=1 t=1s=1 t=1

g
lﬂ

T T
X{Met — E ﬂsthMEf}
t=1s=1

1=

o/
+15

{

T T
Apy = [ BIM = Y BN+ Y| i [ BN = Y Bl M+ Q)T
s=1 s=1

5

Il
—

Let A;_1 be defined as

T
+ i [XtM = nstX;M}
s=1
BV maBM i
=0\ B M~ Y B M+ Q%! (F4)

XIM — YL g XM

and £ = i1(SYTL! + £,1S%) /2. By definition, it is easy to see ||€||o < 0. Then we can
rewrite the above result as
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Now we apply the martingale central limit theorem theorem to show that ¢'¢ converges
to a normal distribution. Let

1

Zy =

=

i-1
[-Az',t—leit +2 ( Y. 5ijejt> eit:| ,
=1
1 g / 1 /
VNT = [m ZlAt_lzgeAt_l - ZN“(Z”S 2665)]
f—=

Let .%;; be the o-field generated by

Fti = (7{611,- --,6N1,€12,---,EN2,- -, €1t—1,+ -+, ENt—1,€1t,€2¢, - - -/eit}-

Then %19, 711, ..., 21N, F21, - - -, F2N, - - -, FT1, - - ., FTN form a sequence of increasing o-
fields with .%7) = @. Given the above definition, it is easy to verify that E(z:|.%;,—1) = 0.
So {zti, #ii_1} forms a martingale difference array. According to Corollary 3.1 in Hall

and Heyde (1980), we have Zfil Zthl Z1i/VVNT i> N(0,1) if we can show that any € > 0,

T N

E[z (2] > €)|Fpi1] 5 0 (E5)
t=1i=1
and
T N ,
Y Y E(zf|Fiic1) — Vnt = 0 (F.6)
i=1i=1

Let Z;; = Aj1—1eir + 2(2;;% Eijeji)eir, ie., z; = Z;;/v' NT. A sufficient condition for (F5) is
]E(fo‘;) < C for some constant C for all i and ¢. To see this, notice that
1
E(zul > €)= [ P < [ |zHdp
|zti|>€ € \Zn\>€

< 5 [ l2ul?*dP = SE(|z)

Given this result,

T

LY 2 1 L& 2+5
Z Eztz |zei| > €)|.F1i-] :ZZE[Zti(|Zfi|>€ QZZE zti|

t=1i= t=1i=1

T N
= 11972 Z ZE( Zti‘ZM) = O((NT>_5/2)~

Thus, (E5) follows by the markov inequality. Now consider Z;; = A;;_1ej + 2(2;;% Eijejt)eir-

Let u = ﬁg and v = 2 + 4, it is seen that u~! +v~! = 1. Notice that |%;]| is bounded by

i—1

o 1 1

24| < | Aii—a] - leiel + Y _ (1€ lejr]) - (217 |ex])-
j=1

By the Holder inequality

1

Ton < (Thalt)" (Zi)

i
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we can further bound the preceding expression by

i1 u
12| < [\Ai,t—ﬂ” +3) \&jH%\”]
=1

i—1 v
lei|” + ) 2°1E;j !Eit\v]
=1

or equivalently

v
i—1 "

|Z4|” < [!Ai,tﬂu +) |5ij’|€jt|u]
j=1

i1
leie|” + 220|5ij||eit|v] ~

j=1

By E(|Zit|v) = E[E(|th‘v|yt’i_1)], we have

i—1 u i-1
E(|z#|”) < E [|Ai,t—1|u +) |5ij||€jt|”] [E(|eit|v) +) 2% - E(|eit|v)] (E7)
i i

Since E(Je;t|®) < oo by Assumption A, together with the boundedness of || €], we have
i-1
E(lei]”) + ) 2°|€;] - E(lex]”) < C
=1

for some constant C. Proceed to consider the first factor on the right hand side of (E7).
Since f(x) = x?/" is a convex function for v > u, it follows that

[;wi|xi|”]l < [;wi|xi|v}

1
v

i-1
by the Jensen inequality, where w; > 0 and }_; w; = 1. Now let ¢; = 1+ }_ |&;;|, then
j=1

1

.\ 1
< ! (1 JAiea”+ ) 1€ ‘ejt‘v)]
Gi i=1

1 7=

1 i—1
[g (1 A" +]; €1 legl")

1

or equivalently

i—1

i_l u v—u p—
A"+ ) 1] lejt!“] <¢" [!Ai,tllv +) &l \ejt\v]
=1 =1

i-1

Since ¢; = 1+ Y [&;| is bounded by 1+ ||€||w, which is further bounded by some
=1

constant C. Thus,

2
u

i—1
E ’Ai,tfl‘u + Z |5ij’|ejt|u] <C
j=1

i1
E(JAis1]”) + Y |&5j ']E(|ejt|v)]
=1

By E(|eit|®) < oo, there exists a constant C such that E(|e;|”) < C. Then the last two
terms of the preceding display is bounded. This result, together with E(|A;;_1|”) < o0
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which is given in Lemma F.2, gives that the first factor on the right hand side of (E7) is
bounded for all i and t. Then by (F.7), we have E(|Z;]”) < C for some v > 2 for all i and
t. Then (E.5) follows.

Consider (F.6). By the definition of z;; and .#;;_1, it is seen that

T

1 T i—1 2
E(th|t/tz 1 NT ZA 1Zee~/4t 1+4 Zzo}z(zé’ijejt)
j=1

t=1i=1 t=1 1t=1
1 N T i—1
45T Yo Y oA < Y. 5ij€jt>
i=1t=1 j=1
Let £ be the matrix obtained by setting the elements above the diagonal to zeros. By
definition, we have € = £ + £'. Then we can rewrite the above expression as

N

T T
1 S
=5 ' NT NT /=

+ 4— Z Al 2.Ee (E.8)
For the second term, we have

AE { Z elE zeeget} = 4%&(2@65 Tl ) =2 i{ tr(ZeeE Tee)

NT
where we use the fact that tr(Zeengeg ) = 0, which is due to £ being a low-triangular
matrix with diagonal elements zeros. By the well-known result that

var(v;Av;) = tr(A?) +tr(A’A) + «tr(A o A)

where “o” denotes the Hadamard product and v; are iid over t with zero mean and
identity variance matrix, and the elements of v; are also iid with the fourth moment
3 + x, we have

var [% i e;gﬁz‘eeg‘et} = 2%’0‘ [(2535/2365)2}

which is O ( \1f) So we have

1
, [
NT } ;etg S fer = 24 1T (el ecE) + Oy m). (F.9)

For the third term of (F.8), we see
1 & ~
E[m gAélzeeSEt} N2T2 E.A;If 123352%5 Yee A1 < NZTZ EE ;71235’«4;%71)

where we use the fact that ¥1/26%,,£'51/2 < C - Iy for some constant C. As will be
shown below, g7 Y1 E(A}_;ZeeAi—1) = O(1). So we have

1

./4/ 2635 07
Z ~Eeber = Op(

NT ) (F.10)
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Given (ES8), (F.9) and (F.10), we have

»

t=11i

Mz

1
E(z%|F1i 1) Z Al Zee A1+ 2Ntr(2865’2%5) +0,(1) = VNt +0p(1).

NT

I
—_

Therefore, (F.6) is proved. Given (E5) and (F.6), we have

SN N(0,1).

VNT

Given the above result, if we can show that Vyt — ¢'ID¢ = op(l), then by the Slutsky’s
lemma and the Cramér-Wold theorem, we have

D12F & N(0, L»). (F11)

Now consider the expression of Vyr. By £ = i1(SYZz! + £,15%) /2, the expression of
VnT can be alternatively written as

1 & 2) 1, L. o
VNT = m t:Zl A;_lz‘eeAt—l + l%{ N (Zees Z‘eelSN) Ntr(sl\%)}

By (F.4), we can further rewrite Vyr as

B M- Z_e_;Tzl Bl M+ Q%!
XIM — YL g X!M

/

BiM — Y myBIM + Ji%,.}
ZEG

1 T
_
Vnr = { {NTZ

B,_ M — Y T Bl M+ Q) 2!

BIM — Y1 myBIM + Tzt

2 1 o/ly—1 co 1 o2
~ 0+ ll{ﬁtr(zeeSNZee 5% + ﬁtr(SN)}.
XIM — YL g XM

So, to complete the proof, we need to show

1 1 1.
VMY M) + [tr (S2) 22511 N] = tr(ZeSVEL'SR) + tr(S3R) (F12)
1 &ors, o I N I
+ T Z [BtM - Z o BIM + JIE ]Zee [BtM — Y BV T2 } +0,(1),
t=1 s=1 s=1
1 , 1 R L et
RV MY M) = § o= ) [Bt_lM — Y Bl M+ Q) Z ]
t:1 s=1
. . T . . /
XTee [B_a N = Y Bl AN+ QT | b+ 0p(1),
s=1
1 i{ i } [., . i . ..]/
tr[ X, MX, M| = M — Y 70X, M| e [ XM Y- e XL M| +0,(1),
NT NT t=1 s=1 ! s=1 Y
LV M) = L i Bt~ i BV + 1 |
t StHs t“~ee
NT NT & =
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. . T . . /
X Zee {Bﬁ,lM — Y mB. M+ Q?qze_el] } +0p(1),
s=1

1 ey T &gy AP R ¥
——tr[V'MX, M| = NT ) {B;M — Y maBIM+ ]{Z;l]zee[ M=) nstXQPM} +0,(1),
s=1

NT = o]
1 tr[Y’; MX),M§] = {1 }T [B/ 1M—§T s Bi_ M+ Q; 12—1}

t— S — t—1“ee
NT NT = &

. . T . .. /
X Lee [X{,,M — Z; nstX;pM] } +0,(1),
S=

where the six expressions on left hand side comes from ID and the six ones on right
hand side are the counterparts from VNT Notice that once we have proven the above six
results, we have implicitly shown that Y/ 1 E(A}_;ZeeA;—1) = O(1), as required in
the derivation of (F.6). The proofs of the above six results are similar, so we only choose
the first one to prove. The right hand side of (E.12) is

1 & s 1 &,
ths = = 2 B/MB; + ZW EJ;MBt 2 Z s BiMB, + S5 E]t e It
L. (o
- 27 Z Z 75t ByMJ; + tr(Zee SYZee SN) + Ntf(SNZ)'

By Y; = B; + Ji + Sné;, the left hand side of (F.12) is equal to

1 1 2)
Ihs = - tr[ VMY My] + - [tr(5%) -2 Z S3n]
1 G, 1 &, L 1 2)
:WZYtMYt—mtzlYtMZYSnst—i—N[trS ZZSHN}
1 1 1 oy e
= EB MB; + 25 Z]tMBt + 57 thM]t +2— Ze;s;VM(Bt + 1)
NT NT =
Z,,.. 1ii, ZZ,
+ —= Y & SyMSnér — —— B/ MBgrts — 2 L BiMJs s
NT t=1 NT t=1s=1 NT t=1s=
1 i ZT: _— 1 i i y
- T JiM]s7tst — M Bs + ]s)”st
NT t=1s=1 NTt =1
1 Ld NEJARY, 5 1 1 1 02
- m ;S:Zlet NMSNesﬂst + N (ZeeS Zee SN) Ntr(SN )

Using the results in Lemma E.1, we see that lhs = rhs +0,(1). Thus, (E.11) follows. Given
this result, together with Theorem 5.2, we have Corollary 5.1. This completes the proof.
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