【第1237期】 5月28日计量经济学学术讲座:Data-driven Policy Learning for a Continuous Treatment(解海天,助理教授,北京大学)

发布者:王雨真发布时间:2024-05-31浏览次数:61

【主题】

Data-driven Policy   Learning for a Continuous Treatment

【报告人】

解海天(助理教授,北京大学)

【时间】

2024528日周二09:30-11:00

【地点】

经济学院702会议室

语言

英文

【主持人】

张征宇教授

【摘要】

This paper studies policy   learning under the condition of unconfoundedness with a continuous treatment   variable. Our research begins by employing kernel-based inverse   propensity-weighted (IPW) methods to estimate policy welfare. We aim to   approximate the optimal policy within a global policy class characterized by   infinite Vapnik-Chervonenkis (VC) dimension. This is achieved through the   utilization of a sequence of sieve policy classes, each with finite VC   dimension. Preliminary analysis reveals that welfare regret comprises of   three components: global welfare deficiency, variance, and bias. This leads   to the necessity of simultaneously selecting the optimal bandwidth for   estimation and the optimal policy class for welfare approximation. To tackle   this challenge, we introduce a semi-data-driven strategy that employs   penalization techniques. This approach yields oracle inequalities that   adeptly balance the three components of welfare regret without prior   knowledge of the welfare deficiency. By utilizing precise maximal and   concentration inequalities, we derive sharper regret bounds than those   currently available in the literature. In instances where the propensity   score is unknown, we adopt the doubly robust (DR) moment condition tailored   to the continuous treatment setting. In alignment with the binary-treatment   case, the DR welfare regret closely parallels the IPW welfare regret, given   the fast convergence of nuisance estimators.

报告人简介

解海天,2023年毕业于美国加州大学圣地亚哥分校。主要研究方向为因果推断理论,包括工具变量、断点回归等因果推断方法的非参数/半参数识别与估计,以及基于因果模型的政策分析评估、政策学习与统计决策等。研究成果发表于Journal of Business and Economic Statistics,   Journal of Econometrics, Oxford Bulletin of Economics and Statistics等国际期刊。


联系我们
地址:上海市国定路777号
邮编:200433
E-mail:wxb@mail.shufe.edu.cn
扫码关注我们