【第1238期】 5月30日计量经济学学术讲座: Endogenous High-Dimensional Quantile Regression: A Control Function Approach(张凯夕,博士候选人,香港科技大学)

发布者:王雨真发布时间:2024-05-31浏览次数:57

【主题】

Endogenous   High-Dimensional Quantile Regression: A Control Function Approach

【报告人】

张凯夕(博士候选人,香港科技大学)

【时间】

2024530日周10:00-11:30

【地点】

经济学院701会议室

语言

中文

【主持人】

金泽群讲师

【摘要】

In this paper, we propose   a two-step double selection estimator to estimate a high-dimensional quantile   regression model in the presence of endogeneity based on the control function   (CF) approach. First, we extend the idea of double selection to quantile   analysis. We perform a l1 penalized quantile regression on the residuals of   the reduced-form equation for the endogenous explanatory variable in the   first step, and then select control variables to predict the tau-quantile of   the conditional distribution of outcome with residuals included as an   additional control. Second, we find that under general conditions, our model   is computationally simpler than instrumental variable quantile regression   (IVQR). Monte Carlo simulations also show that our estimator performs well   under high-dimensional controls. Third, we employ our model to investigate   the impact of compulsory schooling on earnings using 1530 instruments for   education based on Angrist-Krueger data, and we find that high-dimensional   quantile estimates are smaller than 2SLS and OLS estimates.

报告人简介

Kaixi Zhang is a PhD candidate at the Hong Kong University of Science and   Technology. Her research field is econometric theory, with particular   interests in quantile regression, high-dimensional models and machine   learning.


联系我们
地址:上海市国定路777号
邮编:200433
E-mail:wxb@mail.shufe.edu.cn
扫码关注我们